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Abstract:
This paper considers control synthesis for polynomial control systems. The developed method
leans upon Lyapunov stability and Bernstein certificates of positivity. We strive to develop
an algorithm that computes a polynomial control and a polynomial Lyaponov function in the
simplicial Bernstein form. Subsequently, we reduce the control synthesis problem to a finite
number of evaluations of a polynomial within Bernstein coefficient bounds representing controls
and Lyapunov functions. As a consequence, the equilibrium is asymptotically stable with this
control.
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1. INTRODUCTION

We use the Lyapunov stability of control systems to
develop an algorithm that computes a pair (u, v) of a
polynomial Lyapunov v and a polynomial control u in
the Bernstein form. Computing of such a pair ensures
asymptotic stability of the designed feedback system.
Many researchers have focused on the topic of stability
analysis for nonlinear dynamic systems, which continues
to be a challenging problem Ackerman (1993); Nersesov
and Haddad (2006). The range of polynomial functions
over a simplex is bounded by the smallest and the largest
Bernstein coefficients, enclosure bound. We investigate
certificates of positivity of polynomials in the Bernstein
basis with respect to degree elevation and with respect
to the maximum diameter of subsimplices Leroy (2009);
Hamadneh and Wisniewski (2017). Our strategy of Bern-
stein coefficient bounds is motivated in Ribard et al.
(2016). However, we additionally develop an algorithm
for shrinking of general coefficient bounds. We use the
Bernstein coefficients to derive bounds for u and v. Bound-
ing of polynomial functions provides general certificates of
positivity over a given domain (simplex). Computing such
bounds for the range (minimum and maximum) of values
of a polynomial has received a good deal of attention in
the past Lane and Riesenfeld (1980); Rokne (1977); Cargo
and Shisha (1966); Garloff (1986); Smith (2012); Garloff
and Hamadneh (2015). Peteres Nairn et al. (1999) first
provided the convergence properties of the sequence of con-
trol polygons to the Bernstein-Bezier segment with respect
to subdivision and degree elevation. The extension to the
multivariate case over a simplex is given in Leroy (2009),
Titi et al. (2015) and Hamadneh (2018). A method for
solving systems within an n-dimensional simplex, which
relies on the representation of polynomials in the barycen-
tric Bernstein basis is given in Reuter et al. (2008). As a
consequence, the stability of the designed feedback system

has been translated to certificates of positivity. The Lie
derivative by Lyapunov stability of control systems should
be negative semidefinite in the neighborhood of the equi-
librium. By subdivision at the equilibrium point, we show
that the enclosure bound of polynomials over a union of
subsimplices is contained in the enclosure bound over the
whole simplex. This leads to local certificates of positivity.

Computing a Lyapunov function of polynomial vector
fields has also attracted the interest of many researchers in
the past Hou and Michel (2007); Ackerman (1993); Ners-
esov and Haddad (2006); Sloth and Wisniewski (2014).
The approach we have chosen for computing a Lyapunov
function for a polynomial system is to provide a certificate
of positivity. Algorithms for using polynomial certificates
of positivity for computing Lyapunov functions are given
in Kamyar et al. (2014); Habets et al. (2006). The existence
of the popular sum of squares certificate of positivity can
be formulated as a semidefinite programming problem Par-
rilo (2003). In fact, the previous algorithms for computing
(u, v) suffer from complexity issues, e.g., Hill and Moylan
(1977); Riener et al. (2013). In this paper, we will use the
certificates of positivity in the simplicial Bernstein basis
for the general designing control systems for polynomial
dynamic systems. By applying the barycentric coordinate
of a simplex, we provide a local certificate of positivity for
a Lyapunov function in the Bernstein basis. Subsequently,
we provide a new technique for computing a pair (u, v)
of control and Lyapunov functions of a finite Bernstein
degree. Finally, we provide an algorithm for tightening the
coefficient bounds that give an estimation of the control
and Lyapunov functions.

The organization of our paper is as follows: In the next
section, we briefly recall the Bernstein form and its basic
properties. The main results are given in Section 3. Finally,
Section 4 comprises conclusions.



2. BACKGROUND

Throughout this paper, we use polynomials in the Bern-
stein basis over simplices. Specifically, we apply the Bern-
stein basis for the stability of polynomial dynamic systems
since the Bernstein basis is positive semidefinite over a

simplex V , i.e., B
(k)
α (x) ≥ 0, ∀x ∈ V . For completeness

of the exposition, we introduce some notation and es-
sential background about the simplicial Bernstein basis.
Throughout the paper, V = [σ0, . . . , σn] will denote a
non-degenerate simplex of Rn; viz the points σ0, . . . , σn
are affinely independent. Let λ0, . . . , λn be the associated
barycentric coordinates of V , i.e., the linear polynomials
of R[X] = R[X1, . . . , Xn] such that

∑n
i=0 λi(x) = 1 and

∀x ∈ Rn, x = λ0(x)σ0 + · · · + λn(x)σn. The realization
|V | of the simplex V is the subset of Rn defined as
the convex hull of the points σ0, ..., σn. Without loss of
generality, we can assume that V is the standard simplex
∆ = [e0, e1, . . . , en], where (e1, . . . , en) denotes the canon-
ical basis of Rn, and e0 = (0, ..., 0) is the origin. This is
not a restriction since any simplex V in Rn can be mapped
affinely upon ∆. Specifically, if x = (x1, ..., xn) ∈ ∆, then
(λ0, ..., λn) = (1−

∑n
i=1 xi, x1, ..., xn).

We refer to the multi-index α = (α0, . . . , αn) ∈ Nn+1 and

|α|= α0 + · · · + αn. For β̂ = (β1, ..., βn), α̂ = (α1, ..., αn)

with β̂ ≤ α̂ (component-wise), we define(
α̂

β̂

)
:=

n∏
i=1

(
αi
βi

)
.

If k is a natural number such that |β̂| ≤ k, we use the

notation
(
k
β̂

)
:= k!

β1!...βn!(k−|β̂|)!
.

For x ∈ Rn its multi-powers are xβ̂ :=
∏n
i=1 x

βi

i . Let f be
a polynomial (in the monomial form) function of degree l,

f(x) =
∑
|β̂|≤l

aβ̂x
β̂ , (1)

f can be uniquely expresses for l ≤ k as

f(x) =
∑
|α|=k

bα(f, k,∆)B(k)
α (x), (2)

where bα(f, k,∆) are called the Bernstein coefficients of f
of degree k with respect to ∆ given as

bα(f, k,∆) =
∑
β̂≤α̂

(
α̂
β̂

)(
k
β̂

)aβ̂ . (3)

The Bernstein polynomials of degree k with respect to ∆

are the polynomials (B
(k)
α )|α|=k, where

B(k)
α (λ) =

(
k

α

)
λα. (4)

The grid points of degree k associated to ∆ are the points

σα(k,∆) =
α0e0 + · · ·+ αnen

k
∈ Rn (|α| = k), (5)

whereas, the control points associated to f are

(σα(k,∆), bα(f, k,∆)) ∈ Rn+1 (|α| = k). (6)

The set of control points of f forms its control net of degree
k.

Finally, the discrete polynomial over ∆ is defined as
f(σα(k,∆)).

3. MAIN RESULTS

In this section, we devise an algorithm for control syn-
thesis. Specifically, we will translate the control synthe-
sis problem to finding a pair of control and Lyapunov
functions such that certain bilinear inequalities hold. If
there exists such (u, v), we will briefly say that there
exists a stabilizing control. We suppose that all vector
fields are polynomials defined on a union of simplices,
∆ = W [1]∪...∪W [s]. To this end, we use the representation
of all polynomials in the simplicial Bernstein basis. The
considered affine control system is given by

ẋ = Fu(x) = p(x) + g(x)u(x), (7)

where the vector field Fu : Rn −→ Rn is defined by the
drift p : Rn −→ Rn and the control u : Rn −→ Rm with
the input matrix function g : Rn −→ Rn×m.

We follow the definition of asymptotic and stability, and
recall the condition of Lyapunov stability.

Definition 1. Let x0 be an equilibrium point for (7) and let
A ⊆ Rn be a collection of simplices containing the interior
point x0. Let v : A −→ R be a continuously differentiable
function such that v(x0) = 0,

v(x) > 0, ∀x ∈ A \ {x0},

LFu
(v)(x) = −∂v

∂x
(x)Fu(x) > 0, ∀x ∈ A \ {x0},

where L denotes the negative Lie derivative. Then v will
be called a strict Lyapunov function for Fu.

Specifically, if there exist a polynomial Lyapunov function
for Fu, then x0 is an asymptoticly stable equilibrium of
the system Fu. We will say that there is a polynomial
stabilizing control u(x), if there exists v(x) such that v(x)
is a strict polynomial Lyapunov function.

Without loss of generality, we assume throughout the
paper that x0 = e0.

3.1 Certificate of Stability

In this section, we will subdivide ∆ around the equilibrium
and compute a pair (u, v) over a union of subsimplices
such that u and v are control and Lyapunov functions for
(7). Subdivision of a simplex leads to a local certificate of
positivity (for the negative Lie derivative). We suppose
that all vector fields are polynomials semidefinite on a
union of simplices, ∆ = W [1] ∪ ... ∪ W [s], as in Figure
2. The graph of a polynomial f over ∆ is contained in the
convex hull of its associated control points. This implies
the range enclosing property Cargo and Shisha (1966)

min
|α|=k

bα(f, k,∆) ≤ f(x) ≤ max
|α|=k

bα(f, k,∆), x ∈ ∆. (8)

It follows that the interval (enclosure bound)

B(f, k,∆) := [min bα(f, k,∆),max bα(f, k,∆)]

encloses the range of f of degree l ≤ k over ∆. Leroy in
Leroy (2009) gave convergence properties of the discrete
polynomial f(σα(k,W [i])) to its Bernstein control points
(formulas (5) and (6)). We will exploit this convergence to



test if the discrete LFu
(v)(σα(k,W [i])) is positive semidef-

inite over W [1] ∪ ... ∪W [s].

The proof of the following lemma follows by using the
linear convex combinations of the Bernstein coefficients
in de Casteljau algorithm Peters (1994).

Lemma 2. Let W be a subsimplex of ∆, which is extracted
from ∆ by n + 1 subdivision steps, see 1. Then, by de
Casteljau algorithm Peters (1994), the enclosure bound
Bα(f, k,W ) of f over W is bounded as

B(f, k,W ) ⊆ B(f, k,∆).

Lemma 2 illustrates the existence of local certificates of
positivity of polynomials in the Bernstein basis under
subdivision of a simplex.

Remark 3. Denote the union of the enclosure bounds over
W [i], i = 0, ..., n, by B(f, k,W [∆]). For W [0] ∪ ...∪W [n] ⊆
∆, it holds from Lemma 2 that

B(f, k,W [∆]) ⊆ B(f, k,∆).

Example 4. The polynomial f = 5x2 − 2x + 1 is positive
on the simplex ∆ = [−1, 1] but the list of Bernstein
coefficients b(f, 2,∆) = (8,−4, 4). The representation of
f in the Bernstein form over [−1, 1] is not sufficient to
determine the certificate of positivity. However, by the
first binary splitting of ∆, the certificate of positivity of f
follows since b(f, 2, [−1, 0]) = (8, 2, 1) and b(f, 2, [0, 1]) =
(1, 0, 4).

The following definition from Leroy (2009) will be used
for the quadratic convergence (convergence of rate 2) in
Theorem 6 and Algorithm 1.

Definition 5. Let ∆ = [e0, ..., en] be a non-degenerate
simplex of Rn. For γ = k−2 and 0 ≤ i < j ≤ n, define the
second differences of f of degree k with respect to ∆ as

52bγ,i,j(f, k,∆) := bγ+ei+ej−1
+ bγ+ei−1+ej

−bγ+ei−1+ej−1
− bγ+ei+ej ,

with the convention e−1 := en. The second differences
constitute the collection

52bγ,i,j(f, k,∆) := (52bγ,i,j(f, k,∆))|γ|=k−2,0≤i<j≤n.

The maximum of the second differences is defined as

|| 52 b(f, d,∆)||∞ := max
|γ|=k−2,0≤i<j≤n

| 52 bγ,i,j(f, k,∆)|.

Theorem 6. (Leroy, 2009, Theorem 4.9) Let ∆ = W [1] ∪
...∪W [s] be a subdivision of the standard simplex ∆, and
h be an upper bound of the diameters of the W [i],s. Let
f be a polynomial function given in the Bernstein form.
Then, for i = 1, ..., s and |α| = k, we have

max |f(σα(k,W [i]))− bα(f, k,W [i])| ≤ h2S(f),

S(f) = k
n2(n+ 1)(n+ 2)2(n+ 3)

576
||52 b(f, k,∆)||∞. (9)

The following Remark is from Leroy (2009).

Remark 1. Binary splitting is usually the most efficient
subdivision scheme, see Figure 2, regarding the running
time as well as the size of the certificates. After at most
n(n+1)/2 steps of binary splitting of a simplex of diameter
h, the diameter of the subsimplices is less than h/2.

Fig. 1. An extracted subsimplex (shaded) by n+1 barycen-
tric subdivision steps.

We will suppose, ∀|α| = k, that b
j

α, bα ∈ R>0 and bjα ∈ R<0

are picked Bernstein coefficient bounds from the state

space. Here, we will not shrink the bounds [bjα, b
j

α] and
[0, bα]. We subdivide the simplex ∆ and compute (u, v)
over a union of simplices such that bα(LFu

(v), k,W [i]) are
positive semidefinite

Note that the discrete polynomial LFu(v)(σα(k,W [i]))
is unknown. Hence, de Casteljau algorithm is a recur-
sive method for computing the Bernstein coefficients of
LFu(v)(σα(k,W [i])) over subsimplices as linear convex
combinations of the coefficients over ∆.

Definition 7. (Leroy, 2009, Defenition 5.5) The mesh of
∆ = W [1]∪...∪W [s], denoted by m̂, is the largest diameter
of W [i], i = 1, ..., s. If J is a subdivision scheme, we write
JN (∆) the subdivision of ∆ obtained after N successive
subdivision steps. J is said to have a shrinking factor
0 < C < 1 if for every simplex ∆, m̂(J(∆)) ≤ Cm̂(∆),
where m̂(J(∆)) is the largest mesh among the subsimplices
in J(∆).

Fig. 2. Binary splitting of a simplex around the equilibrium
point.

We let bα(v, k,W ), bα(uj , k,W ) belong to coefficient

bounds [0, bα], [bjα, b
j

α]. Consequently, we are able to com-
pute bα(LFu(v), k,∆). We will use the assumption in
the following corollary to compute a stabilizing control
and a Lyapunov function over W [1] ∪ ... ∪ W [s] so that
bα(LFu(v), k,W [i]) are positive semidefinite. In the follow-
ing corollary, we let a small positive δ within the interval
spanned between the computed min bα(LFu(v), k,∆) and
the minimum of an unknown discrete positive semidefinite



LFu
(v)(σα(k,W [i])). If LFu

(v)(x) satisfies the certificates
of positivity over W [i], i = 1, ..., s, we say that LFu(v)(x)
satisfies the local certificate of positivity associated to the
subdivision J(∆).

Corollary 8. suppose (u, v) are within coefficient bounds

[bjα, b
j

α] and [0, bα] such that min bα(LFu
(v), k,∆) is non-

positive. Let J(∆) = (W [1], ...,W [s]) be a subdivision of
the simplex ∆, and the interiors of the simplices W [i]

are disjoint. Let δ be a small positive real number with
δ ≤ minLFu

(v)(σα(k,W [i])). Let N be the number of
subdivision steps of ∆, and C < 1 is a shrinking factor.
Assume that

1

CN
>
√

2S/δ, (10)

where S = S(LFu
(v)) is given by (9). Then, LFu

(v)(x)
satisfies the local certificate of positivity associated to
JN (∆).

Proof. Let ∆ = W [1] ∪ ... ∪W [s] be a subdivision of ∆ so
that

0 ≤ δ −min bα(LFu
(v), k,W [i])

≤ minLFu
(v)(σα(k,W [i]))−min bα(LFu

(v), k,W [i])
≤ δ.

Then δ is nonnegative. Theorem 6 implies that

minLFu
(v)(σα(k,W [i]))−min bα(LFu

(v), k,W [i])

≤ S(
√

2CN )2,

where m̂(J(∆)) =
√

2. By rearranging S(
√

2CN )2 < δ the
statement follows. 2

In Algorithm 1, we derive from Corollary 8 a condition
(10) to test if there is a stabilizing control and a Lya-
punov function over a union of simplices. If we satisfy this
condition, then we will not need to shrink the coefficient
bounds in Algorithm 2.
Algorithm 1. (Stabilizing polynomial control over sub-
simplices)

Input. bounds bα, b
j

α ∈ R>0, bjα ∈ R<0, for the coefficients
of v and uj , j = 1, ...,m, δ > 0, ∆ = W [1], ...,W [s] with
shrinking factor 0 < C < 1 (C = 1/2 say), and N is the
number of subdivision steps.
Output. a pair (u, v) with Bernstein coefficients over
W [1] ∪ ... ∪W [s].
Initialization: bα(uj , k,∆) ∈ [bjα, b

j

α], ∀|α| = k, bα(v, k,∆) ∈
[0, bα], with bα(v, k,∆) = 0 if α0 = k.
Compute: The constant S, min bα(LFu

(v), k,W [i]), i =

1, ..., s, with shrinking factor 1
CN >

√
2S/δ.

1. if min bα(LFu(v), k,W [i]) ≥ δ
2. then (u, v) are given within the input bounds over
W [1] ∪ ... ∪W [s]

3. else proceed to algorithm 2 for shrinking the input
bounds

4. end if

Finally, from Algorithm 1, we can compute (u, v) within
coefficient bounds over a union of simplices. If there is no

stabilizing control within the input coefficient bounds over
this union, then we proceed to Algorithm 2 for shrinking

the initial coefficient bounds [bjα, b
j

α] and [0, bα].

3.2 Controller Synthesis

We compute a pair (u, v) of polynomial functions within
coefficient bounds such that v is a Lyapunov function
for Fu. We also estimate Bernstein coefficient bounds for
(u, v) over the whole ∆. Specifically, the coefficient bounds
of an initial control and a candidate Lyapunov function
are recursively shrinked until the Bernstein coefficient
bounds of u and v are sufficiently estimated, i.e., Bernstein
coefficient bounds for (u, v) such that LFu

(v) is positive
semidefinite.

The Bernstein form of v of degree l ≤ k over (without loss
of generality) W ∈ {W [1], ...,W [s]} is given by

v =
∑
|α|=k

bα(v, k,W )B(k)
α ,

where bα(v, k,W ) > 0 for all |α| = k, α0 6= k. Therefore,
as given by Farouki and Rajan Farouki and Rajan (1988)

v′i :=
∂v

∂xi
(x) =

∑
|α|=k

bα(v, k,W )
∂B

(k)
α

∂xi
(x)

=
∑
|α|=k

bα(v, k,W )k(B
(k−1)
α−ei −B

(k−1)
α )

(Bk−1
−1 = Bk−1

k = 0)

=
∑

|α|=k−1

k(bα+ei − bα)B(k−1)
α (x), (11)

from which the Bernstein coefficients of v′i are linear
combinations of the coefficients of v.

Remark 9. The number of simplicial Bernstein coefficients
of any n−dimensional polynomial is M :=

(
k+n
k

)
.

Define a sub-bound of any [b, b] by [bε, bε], where

bε = b+ (b− b)ε, 0 ≤ ε ≤ 1, (12)

and bε = b− (b− b)ε, 0 ≤ ε ≤ 1. (13)

For t ≥ 1 and 1 > tε > 0, we have

[b, b] ⊃ [btε, b] ⊃ [b(t−1)ε, b] ⊃ .... ⊃ [bε, b], bε < b. (14)

Define L(ε)[b, b] = [bε, b] and R(ε)[b, b] = [b, bε].

We can also increase the width of any interval bound [b, b]
as

b−ε = b− (b− b)ε, (15)

and
b
+

ε = b+ (b− b)ε, 0 ≤ ε ≤ 1. (16)

Define L−(ε)[b, b] = [b−ε , b] and R+(ε)[b, b] = [b, b
+

ε ]. For
the general case, we define

Q(ε) = {L(ε), R(ε), L−(ε), R+(ε)}.

Theorem 10 estimates bounds that enclose a Lyapunov
polynomial and a polynomial control for (7). The proof



provides the choice of subdivision of coefficient bounds
used in an algorithm in Section 3.3.

Theorem 10. Let bα, b
j

α ∈ R>0 and bjα ∈ R<0, j = 1, ...,m,
be real numbers. Suppose there exists a stabilizing pair
(u, v) for Fu. Then, for 1 ≥ ε ≥ 0, there exists t, s ∈ N+

and dj1, ...., d
j
t ∈ Q(ε) with q1, ...., qs ∈ Q(ε) such that

bα(uj , k,W ) ∈ djt ◦ d
j
t−1 ◦ ... ◦ d

j
1[bjα, b

j

α] and

bα(v, k,W ) ∈ qs ◦ qs−1 ◦ ... ◦ q1[0, bα].

Proof. Let bα(v, k,W ) ∈ [0, bα]M for all |α| = k, where

bα(v, k,W ) = 0 for α0 = k, and bα(uj , k,W ) ∈ [bjα, b
j

α]M

for all |α| = k and denote this control by u(x). It is
sufficient to let the coefficients are belong to the vertices

of the boxes [bjα, b
j

α]M , [0, bα]M .

The Bernstein coefficients of LFu(v)(x) can be rearranged
as (cf. Definition 1, where bjα(u) stands for bα(uj , k,W )
and bα(v) for bα(v, k,W ))

bα(LFu
(v), k,W ) =

n∑
i=1

pi(bα(v))i + b1α(u1)

n∑
i=1

gi1(bα(v))i

+...+ bmα (um)

n∑
i=1

gim(bα(v))i, |α| = k. (17)

=: Hα(v) +Hα(u1, v) + ...+Hα(um, v).

Hence,

LFu
(v)(x) =

∑
|α|=k

Hα(v)Bα(x) +
∑
|α|=k

Hα(v, u1)Bα(x)

+...+
∑
|α|=k

Hα(v, um)Bα(x).

Let min bα(LFu
(v), k,W ) =: Hα∗(v) + Hα∗(u1, v) + ... +

Hα∗(um, v), for some |α∗| = k is positive. Then

LFu
(v)(x) > 0, ∀x ∈W \ {e0}, (18)

and (u, v) have Bernstein coefficients within [0, bα] and

[bjα, b
j

α], j = 1, ...,m, ε = 0. Otherwise, suppose LFu
(v) is

non-positive. Then for ε > 0, we have the following cases.

Case 1: Hα∗(uj0 , v) ≤ 0 (Hα∗(v) > 0), for some j0 ∈
{1, ...,m}. In this case, we apply R(ε)[bj0α∗ , b

j0
α∗ ] if the

coefficients of uj0 are positive (we apply L(ε)[bj0α∗ , b
j0
α∗ ] if

the coefficients of uj0 are non-positive). This shrinking of
bounds of some uj0 does not affect the other positive terms
of (17). For ε > 0, we deduce

Hα∗(u∗j0 , v) > Hα∗(uj0 , v),

where u∗j0 denotes the control with coefficients belong to

R(ε)[bj0α∗ , b
j0
α∗ ].

Case 2: Hα∗(v) ≤ 0 (Hα∗(uj , v) > 0, ∀j). We ap-

ply R(ε)[0, bα∗ ]. Here, shrinking the bound of v de-
creases the other positive terms of (17). Hence, we apply

R+(ε)[bjα∗ , b
j

α∗ ], ∀j = 1, ...,m, if the coefficients of uj in
(17) are positive (If the coefficients of some uj are non-

positive we apply L−(ε)[bjα∗ , b
j

α∗ ]). This means, we shrink
the bound of v and increase the corresponding independent

bounds of uj by the value ε.

Case 3: Hα∗(v) ≤ 0 and Hα∗(uj0 , v) ≤ 0, for some

j0 ∈ {1, ...,m}. In this case, we apply R(ε)[0, bα∗ ] and

R(ε)[bj0α∗ , b
j0
α∗ ], if the corresponding coefficients of uj0 are

positive (for the non-positive coefficients of uj0 we apply

L−(ε)[bj0α∗ , b
j0
α∗ ]). Furthermore, we apply R+(ε)[bjα∗ , b

j

α∗ ],
∀j = 1, ...,m, j 6= j0. This holds

Hα∗(v∗) +Hα∗(u∗j0 , v
∗) > Hα∗(v) +Hα∗(uj0 , v),

where v∗ denotes a Lyapunov polynomial of coefficients
belong to R(ε)[0, bα∗ ]. The restriction of all cases above,
for all i = 1, ..,max{s, t}, is that bα∗(v)−iε ≥ 0. Hence, we

may compute some dj0t ◦ d
j0
t−1[bj0α∗ , b

j0
α∗ ] = 0. This eliminate

the corresponding j0-th term of LFu
(v). It follows that

LF∗
u

(v) is positive with coefficients for (u, v) belong to qs ◦
qs−1[0, bα] and djt ◦ d

j
t−1[bjα, b

j

α]. Repeating the arguments
for all |α| = k that refer to all non-positive coefficients of
bα(LFu

(v), k,W ), the proof follows. 2

3.3 Algorithm for Controller Synthesis

In this section, we suppose that there exist a stabilizing
control and a Lyapunov function for the system (7).
Subsequently, we derive from Theorem 10 an algorithm
that computes (u, v) within coefficient bounds so that
LFu

(v) (Remark ??) is positive semidefinite. Specifically,
we will approximate bounds by shrinking or increasing the
width of Bernstein bounds of u and v.

Let

LFu
(v)(x) = (

∂v

∂x
(x))T (p(x) + g(x)u(x)),

where u : Rn −→ Rm is the control polynomial function.
For k ≤ l and W ∈ {W [0], ...,W [n]}, the Bernstein
coefficients bα(LFu

(v), k,W ) are given by (17). It follows
that, ∀x ∈W ,

min bα(LFu(v), k,W ) ≤ LFu(v)(x) ≤ max bα(LFu(v), k,W ).

Rearrange the Bernstein coefficients of LFu(v)(x)

bα(LFu
(v), k,W ) =

n∑
i=1

pi(bα(v))i + b1α(u1)

n∑
i=1

gi1(bα(v))i

+...+ bmα (um)

n∑
i=1

gim(bα(v))i

= Hα(v) +Hα(u1, v) + ...+Hα(um, v),

and suppose

LFu
(v) = bα∗(LFu(v), k,W )

= Hα∗(v)+Hα∗(u1, v)+...+Hα∗(um, v), for some |α∗| = k.
(19)

Algorithm 2. (Computing controller within coefficient
bounds)

Input. bjα ∈ R<0, b
j

α, bα ∈ R>0, j = 1, ...,m, and 0 < ε,

with t, s ∈ N>0 and Qj(ε)[bjα, b
j

α], Q(ε)[0, bα].

Output djt ◦ d
j
t−1 ◦ ... ◦ d

j
1[bjα, b

j

α], j = 1, ...,m, and

R(sε)[0, bα].



Initialization: bα(uj , k,W ) ∈ [bjα, b
j

α]M =: dj0[bjα, b
j

α]M ,

bα(v, k,W ) ∈ [0, bα]M =: R(0)[0, bα]M ,with bα(v, k,W ) =
0 if α0 = k.
Compute: (the minimum of (17)) LFu

(v) = Hα∗(v) +
Hα∗(u1, v) + ...+Hα∗(um, v), for some |α∗| = k.

1. if LFu
(v) > 0

2. then LFu(v)(x) > 0

3. else if LFu
(v) ≤ 0

4. then for i = 1, ...,max{t, s} do compute

dji ◦ d
j
i−1[bjα, b

j

α], R(iε)[0, bα]

5. end if

6. end if

7. return LF∗
u

(v) with dji , R(iε).

Algorithm 2 tests if there is a stabilizing control and

a Lyapunov function within bounds [bjα, b
j

α], [0, bα], and

computes d[bjα∗ , b
j

α∗ ] and q[0, bα∗ ] such that LFu
(v)(x) is

positive semidefinite.

Lemma 11. Under the assumptions of Theorem 10, the
number of iterations (t, s) needed to compute djt ◦d

j
t−1◦...◦

dj1[bjα∗ , b
j

α∗ ], j = 1, ...,m, and qs◦qs−1◦...◦q1[0, bα], for some

|α∗| = k, that yield a negative LFu
(v) is max{t, s} ≤ bα∗ ,

where bα∗ denotes the upper coefficient bound of v.

Proof. Suppose bα∗(v, k,W ) ∈ [0, bα∗(v)] for some |α∗| =
k, and bα∗(uj , k,W ) ∈ [bjα∗(u), b

j

α∗(u)], j = 1, ...,m. From
(17), let the cases 1-3 above are hold. Then, we deduce
from R(iε)[0, bα∗ ] of v that bα∗(v) − iε ≥ 0, where i
denotes the loop indicator of iε ≥ 0. It follows for i =
1, ...,max{s, t} =: z,

0 ≤ bα∗(v)− zε ≤ bα∗(v)− (z − 1)ε ≤ ... ≤ bα∗(v)− ε,
from which zε ≤ bα∗(v). Since increasing the width of the
bounds of the corresponding uj in (17) depends on the
same ε, the statement follows. 2

Fig. 3. Shrinking the upper bound of v, shrinking the lower
bound of u and raising its upper bound.

Finally, we guarantee that LFu(v)(x) > 0 for all x ∈ W \
{e0} by degree elevation or subdivision of W . Degree
elevation satisfies the global certificates of positivity. Re-
peatedly subdivision of W satisfies local certificates of pos-

itivity, whereas, Algorithm 2 computes the best coefficient
bounds for u and v with few zero bounds.

To illustrate Algorithm 2, we compute on coefficient in
the following example for (u, v) such that the negative Lie
derivative is positive semidefinite.

Example 12. Let(
ẋ1

ẋ2

ẋ3

)
=

 x3
1

x1 − 8x2
2

−x1x2

+

(
1 0
0 0
0 1

)
.

(
u1

u2

)
be of degree l = 3 over ∆. In order to compute v(x) and

u(x), we may suppose [0, b
v

α]M = [0, 3]×[0, 10]8×[0, 5], and

[buα, b
u

α]M = [−5, 5]×[−4, 2]8×[−6, 1]. We give the method,

for simplicity, for some |α∗| = l, i.e., bα∗(v, l, V ) = b
v

α∗ and

bα∗(u, l, V ) = b
u

α∗ . Let bα∗(v, l, V ) = 10 and bα∗(u, l, V ) =
2, and compute (ε = 0)

bα∗(LFu(v)) = Hα∗(v) +Hα∗(u1, v) +Hα∗(u2, v)

= −70 + 2(10) + 2(10) = −30. (negative)

Note that Hα∗(v) < 0 and Hα∗(u, v) > 0. Hence, we
let ε = 1/4 and apply R(1/4)[0, 10] = [0, 8] and in-
crease the corresponding upper bound of u, case 2 above,
R+(1/4)[−4, 2] = [−4, 3.5]. Computing bα∗(LF∗

u
(v)) with

the new bounds of (u, v) result

bα∗(LF∗
u

(v)) = −56 + 3.5(8) + 3.5(8) = 0.

Eventually, at the second iteration (2ε = 1/2) of subdivi-
sion bounds, bα∗(LF∗

u
(v)) is negative with R(1/2)[0, 10] =

[0, 4] and R+(1/2)[−4, 2] = [−4, 5]. It follows that the
number of iterations (t = s) needed to (implement Al-
gorithm 2) increase and shrink the bounds is equal 2,
where bα∗(v) = 4 and bα∗(u) = 5. Repeatedly applying the
algorithm for all |α| = l, computes all coefficients of u and
v. Subsequently, we have − ∂v

∂x (x)Fu(v)(x) ≥ LFu
(v),∀x ∈

V \{e0}, from which the Bernstein coefficients of (u, v) are
belong to the estimated bounds.

4. CONCLUSIONS

In this paper, we exploited certificates of positivity in the
Bernstein basis for polynomial control systems. We inves-
tigated certificates of positivity in the simplicial Bernstein
basis by degree elevation and subdivision. This satisfied
the stability of the designed feedback system in the Bern-
stein form over a union of simplices. Subsequently, we
developed an algorithm for computing a polynomial Lya-
punov function and a control polynomial function within
Bernstein coefficient bounds. Finally, we provided a new
strategy for estimating the coefficient bounds of u and v.
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