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Abstract: Reachability analysis is a powerful tool which is being used extensively and efficiently for the
analysis and control of dynamical systems, especially when linear systems and convex sets are involved.
In this note, we investigate whether exact or approximate reachability operations can be performed
efficiently for the affine–semialgebraic setting, that is when we are dealing with general affine dynamics
and basic semialgebraic sets. We show that it is partially true, we pinpoint the underlying challenges
when this is not possible and indicate some directions for this case.
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1. INTRODUCTION

We study the recursive application of reachability maps to con-
struct invariant sets for discrete-time systems whose dynamics
has a linear dependence on the state, input and disturbances. We
consider the system Σ to have the general form

x(t+ 1) = A(λ(t))x(t) +B(λ(t))u(t) + w(t). (1)

In (1), x(t) ∈ R
n is the state variable, u(t) ∈ U ⊆ R

m is the
input signal, w(t) ∈ W ⊂ R

n is a disturbance signal, where
both U andW are compact sets. The vector λ ∈ L corresponds
to the uncertainties of the system; when λ takes values from
a discrete, finite set, system (1) becomes a switching system,
whose switching pattern may be arbitrary, state-dependent or it
may be constrained to follow paths in an automaton, see, e.g.,
Liberzon (2003), Shorten et al. (2007). If λ ∈ L ⊂ R

nλ , then
the system (1) becomes a parameter varying system, see, e.g.,
Toth (2010).

Reachability analysis generates knowledge about the behaviour
of a system in a subset of the state space. Forward reachability
provides information on where a set of initial states will be in
the future: given the system Σ and a set S ⊂ R

n, the one-step
forward reachability map is

F(Σ,S) = {A(λ)x+B(λ)u+w : (x, u, λ, w) ∈ S×U×L×W}.
(2)

On the other hand backward reachability proceeds inversely
in time. Given the system Σ and a set S ⊂ R

n, the one-step
backward reachability map is

B(Σ,S) = {x : (∃u ∈ U :∀(λ,w) ∈ L ×W ,

A(λ)x +B(λ)u + w ∈ S)}. (3)

Among others, reachability analysis has been used to construct
invariant sets, assess stability, safety and design stabilizing
controllers, see e.g. Blanchini and Miani (2008) for the linear
case and Aubin et al. (2011) for general nonlinear dynamics.
When the involved sets S,U ,L,W are polytopic (or unions
of polytopes) and the dependence of the pair (A,B) on λ
is linear, there exist algorithmic procedures to calculate the
reachability mappings efficiently, at least in moderate state

space dimensions. Consequently, one can compute efficiently
invariant sets as fixed points of appropriately initialized set
sequences, that are generated by iterative application of forward
and backward reachability maps. See, for example, the viability
kernel algorithm Aubin et al. (2011), the backward reachability
algorithm Blanchini and Miani (2008) for the largest controlled
invariant set, the forward reachability algorithm for the minimal
invariant set and its approximations Rakovic et al. (2005),
Kolmanovsky and Gilbert (1998)).

Most available practicable approaches consider either systems
of a linear type and polytopes (e.g., Kvasnica et al. (2004),
Herceg et al. (2013)) or nonlinear systems and/or non polytopic
sets using approximative, however scalable, approaches (a non-
exhaustive list of relevant works includes Asarin et al. (2003),
Frehse et al. (2011), Kurzhanski and Varaiya (2007), Althoff
et al. (2008), Mitchell et al. (2005) Sloth et al. (2012)). In
this paper, we consider systems of the type (1), and we ex-
plore whether we can still compute efficiently reachability maps
when the involved sets are basic 1 semialgebraic sets. These
sets can be seen as a generalization of polyhedral sets, and
appear in several settings in control. For example, quadratic
control Lyapunov functions and sliding mode control induce
state-dependent switching on semialgebraic regions Geromel
and Colaneri (2006), Buisson and Richard (2005). Addition-
ally, constraint sets in power conversion are also semialgebraic,
while such sets can be used to describe nonconvex, even non-
connected environments in obstacle avoidance and path plan-
ning formulations, see e.g., Belta et al. (2005).

Recently (Athanasopoulos and Jungers (2016a), Athanasopou-
los and Jungers (2016b)) we investigated whether reachability
operations, and consequently invariant set constructions, were
efficient for special cases of (1), namely, arbitrarily switching
linear and switching affine systems. The approach involves
the lifting of the system and constraints in a higher dimen-
sional space, induced by the so-called Veronese embedding.
This lift has been used extensively in stability analysis Parrilo
and Jadbabaie (2008), Zelentsovsky (1994), Papachristodoulou
and Prajna (2005) and more generally in Sum of Squares pro-

1 For convenience, we drop the term basic hereafter.



gramming, e.g., Parrilo (2000), Prajna et al. (2002). It allows,
among others, to propose polynomial Lyapunov functions and
solve effectively the corresponding algebraic decrease condi-
tions, thus, leading to less conservative stability criteria and
approximations of the domain of attraction.

Our approach is illustrated in Figure 1 and consists of three
steps. First, the system is lifted in an N -dimensional space,
N > n, where the transformed constraint set can be described
by the intersection of the Veronese surface and a polyhedron.
Second, the reachability sequences of the lifted system are
constructed, which under suitable assumptions converge to a
polytopic invariant set SY . Last, the computed set is projected
by a simple operation to the original state space. The projected
set retains the invariance and maximality/minimality properties.

(Σ,Rn) S ⊂ R
n

(ΣY ,R
N ) SY ⊂ R

N

Lift

Reachability

Lower

Fig. 1. The idea behind the proposed approach.

Contributions: The paper is divided in three parts; first, the
results obtained in Athanasopoulos and Jungers (2016b) are ex-
tended (i) by dealing with state-dependent switching on semial-
gebraic surfaces and (ii) by characterizing the relation between
the reachability maps of the system and its lifted counterpart.
The second part studies the case when the uncertainty vector
λ belongs to a set L ⊂ R

nλ . The challenge in this case is the
nonlinear dependence of the lifted system on the uncertainty
vector, making reachability analysis intractable. We propose
overapproximations of the uncertainty set and establish the re-
lationship between the reachability mappings of the system and
the approximating lifted system. The third part studies systems
with inputs that take values from a compact set U ⊂ R

m.
The lifted system dynamics becomes polynomial with respect
to the input vector, however it remains linear with respect to
the states. We propose to construct large controlled invariant
sets, borrowing the idea of sequential, directional enlargement
of property-preserving invariant sets of, e.g., Athanasopoulos
et al. (2014a), Athanasopoulos et al. (2014b).

2. PRELIMINARIES

First, we provide the definitions of an invariant set.

Definition 1. A set S ⊆ X is called an admissible robust
controlled invariant with respect to the system (1) and the
constraint sets X ⊂ R

n, U ⊂ R
m, if x(0) ∈ S implies that

for all admissible λ(0) ∈ L and w(0) ∈ W there exists an
admissible input u(0) ∈ U ⊂ R

m such that x(1) ∈ S.

In the absence of input signals, we can define the correspond-
ing notion of admissible robust positively invariant sets. For
simplicity, we refer to the aforementioned sets as controlled
invariant and invariant respectively. Of special importance are
the minimal and maximal invariant sets.

Definition 2. The set Smax is called the maximal (controlled)
invariant set with respect to the system (1) and the constraint
sets X ⊂ R

n, U ⊆ R
m, if it is (controlled) invariant and

contains any other (controlled) invariant set. The set Smin is
called the minimal (controlled) invariant set with respect to the
system (1) and the constraint sets X ⊂ R

n, U ⊆ R
m if it is

(controlled) invariant and is included in any other (controlled)
invariant set.

Assumption 1. The sets X ⊂ R
n, U ⊂ R

m,W ⊆ R
n contain

the origin.

We can characterize the minimal and maximal (controlled) in-
variant sets with the set sequences generated by the forward and
backward reachability maps respectively, see, e.g., Blanchini
and Miani (2008) for systems of the type (1).

Theorem 1. Consider the system Σ (1), the constraint setsX ,U
and the set sequences {Ri}, {Ci}, generated by R0 = {0},
Ri+1 = F(Ri,Σ) and C0 = X Ci+1 = B(Ci,Σ) ∩ X . Then,

(i) Smin = lim
j→∞

∪ji=0Ri, (ii) Smax = lim
j→∞

∩ji=0Ci.

For special types of (1), the above results can be further refined
with sufficient (and sometimes necessary) finite termination
conditions. In the remaining of the section, we consider general
affine dynamics and omit the possible dependencies on the time
variable or another signal to present in a simple manner the
subsequent algebraic manipulations.

2.1 Lifting of affine systems

Let us consider systems updated by the rule

x+ = Cx+ e, (4)

where x ∈ R
n, C ∈ R

n×n and e ∈ R
n. We note that the

matrix C and vector e can be constant, functions of a discrete
switching signal or a continuous signal, and they can depend
on a time-varying parameter. We construct the lifted system
dynamics, induced by the state-space transformation induced
by the monomials of x of a maximum degree d > 1. To this
purpose, given a n-tuple α ∈ N

n, the α monomial of a vector
x ∈ R

n is xα = xα1

1 . . . xαn
n . The degree of the monomial

is d =
∑n

i=1 αi. We denote by α! the multinomial coefficient

α! = d!
α1!...αn!

.

Definition 3. (Vector and matrix d-lift, Parrilo and Jadbabaie
(2008), Jungers (2009)). Given a vector x ∈ R

n and an integer

d ≥ 1, the d-lift of x, denoted by x[d], is the vector in R
(n+d−1

d ),
having as elements all the exponents α of degree d, i.e,. xα =√
α!xα. Given C ∈ R

n×n and an integer d ≥ 1, the d-lift of the

matrix C is C [d] ∈ R(
n+d−1

d )×(n+d−1

d ), associated to the linear
map C [d] : x[d] → (Cx)[d].

We can obtain a numerical expression of the entries of C [d]

(Parrilo and Jadbabaie (2008)), with the formula C
[d]
αβ =

per(C(α,β))√
µ(α)µ(β)

,, where the indices α, β are all the d-element mul-

tisets of {1, ..., n}, µ(α) is the product of the factorials of the
multiplicities of the elements of the multiset α and per(C) is
the permanent of the matrix C ∈ R

n×n.

Lemma 1. For a matrix A ∈ R
n×n , a vector x ∈ R

n, it holds

(i) (Cx)[d] = C [d]x[d] and (ii)

[

x
1

][d]

=

[

x[d!]

1

]

, where x[d!] =

T
[

x[d]⊤ x[d−1]⊤ · · · x[1]⊤
]⊤

, with T = diag {Td, ..., T1, 1},

Ti = diag {ti, ..., ti}, ti =
√

∏

d

j=i+1
j

(d−i)! , and x[1] = x.

Definition 4. (Lifted system). Consider the discrete-time sys-
tem (1) and an integer d. The system

y+ = h(y, u, λ, w),



A :=















C [d] a1,2(C
[d−1], e) . . . a1,d−1(C

[2], e[d−2]) a1,d(C, e
[d−1])

0 C [d−1] . . . a2,d−1(C
[2], e[d−3]) a2,d(C, e

[d−2])
...

...
. . .

...
...

0 0 . . . C [2] ad−1,d(C, e)
0 0 . . . 0 C















, b := e[d!]. (5)

h : R(
n+d

d )−1 × R
m × R

nλ × R
n → R

(n+d

d )−1 is called the
lifted system of (1) if for any x(0) ∈ R

n and y(0) = (x(0))[d!]

and any set of sequences {u(0), u(1), ...}, {λ(0), λ(1), ...}, and

{w(0), w(1), ...} it holds that y(t) = (x(t))[d!], for all t ≥ 0.

Lemma 2. Consider the system (4) and an integer d > 1. Then,
the lifted system of (4) is

y+ = Ay + b, (6)

where A, b are given in (5) and the elements aij(C
[l], e[k]),

(i, j, k, l) ∈ {1, d − 1} × {2, d} × {1, d − 1} × {1, d − 1},
are blocks in A depending on the elements of C [l] and e[k].

Proof We bring the dynamics of system (4) in the augmented

form z :=

[

Cx+ e
1

]

=

[

C e
0 1

] [

x
1

]

. From Lemma 1, we

have z[d] =

[

(Cx+ d)[d!]

1

]

=

[

C e
0 1

][d] [

x[d!]

1

]

. The form (5)

follows by taking the first
(

n+d
d

)

− 1 rows of z[d] and arranging
accordingly. �

2.2 Lifting and lowering

In general, for any set S ⊆ R
n and integer d > 1, its

representation in the lifted space is S [d!] ⊂ R
N , N =

(

n+d
d

)

−1,
where

S [d!] = {x[d!] ∈ R
N : x ∈ S}.

We consider sets X ⊆ R
n of the form

X = {x ∈ R
n : gi(x) ≥ 0, i = 1, ..., p}, (7)

where gi(·) : R
n → R, i = 1, ..., p are functions of degree

d ≥ 1. The set (7) in the space of monomials of x is

X [d!] = {x[d!] ∈ R
N : g⊤i x

[d!] ≤ wi, i = 1, ..., p},
where gi ∈ R

N , are vectors having as elements the coefficients
of the monomials appearing in −gi(x), while wi, i = 1, ..., p,
corresponds to the constant term of −gi(x), i = 1, ..., p.

Definition 5. (Lifted Set). Consider the semialgbraic set X , de-
fined in (7). The lifted set of X is

Y := {y ∈ R
N : g⊤i y ≤ wi, i = 1, ..., p}. (8)

It is clear that Y is a polyhedron. We denote the Veronese
surface, i.e., the manifold of the monomials of x in R

N by

V = {y ∈ R
N : ∃x ∈ R

n : y = x[d!]}.

Last, we define the reverse operation. To this purpose, given an

integer d > 1 and a set Y ⊂ R
(n+d

d )−1, the lowering operation
is given by

lower(Y) = {x ∈ R
n : (∃y ∈ Y : y = x[d!])}.

When Y is a polyhedron, lowering requires only to match the
coefficient of each linear inequality that defines Y with the
monomials of x. We summarize several elementary properties
of the lifting and lowering operations below.

Fact 1. Consider any two semialgebraic sets X1 ⊆ R
n,X2 ⊆

R
n, an integer d > 1 and the corresponding lifted sets Y1 ⊆

R
N , Y2 ⊆ R

N , N =
(

n+d
d

)

− 1. Let ⋆ denote the operation
of either union or intersection, i.e., ⋆ ∈ {∪,∩}. The following
hold.

(i) lower(Y1 ⋆ Y2) = lower(Y1) ⋆ lower(Y2),
(ii) lower(Y1) = lower(Y1 ∩ V),

(iii) (X1 ⋆ X2)
[d!] = X [d!]

1 ⋆ X [d!]
2 ,

(iv) X1 ⊆ X2 ⇒ Y1 ⊆ Y2.
(v) Consider a system Σ (1) and the corresponding lifted

system ΣY . If Y1 is (controlled) invariant with respect to
ΣY then X1 is (controlled) invariant with respect to Σ.

Proof We show only item (v). We observe that lower(Y1) =
lower(Y1 ∩ V). Since V is (controlled) invariant by construc-
tion, it follows that Y1 ∩V is (controlled) invariant as well with
respect to ΣY . The result follows directly.

3. SYSTEMS THAT PRESERVE LINEARITY THROUGH
LIFTING

In this section, we extend the setting of Athanasopoulos and
Jungers (2016a) and Athanasopoulos and Jungers (2016b) by
allowing state-dependent switching, and also by investigating
the relations between reachability operations of the original and
the lifted system. To this purpose we consider the system Σsd

subject to the state constraints X (7), of the form

x+ = Cix+ ei, x ∈ Ci, (9)

where Ci ∈ R
n×n, ei ∈ R

n, i = 1, ...,M and Ci are
semialgebraic sets

Ci = {x ∈ R
n : fi,j(x) ≤ 0, j = 1, ..., pi},

such that ∪Mi=1Ci = X . This setting can be found in the litera-
ture, for instance in Lyapunov based state-dependent switching
control Geromel and Colaneri (2006) and in sliding mode con-
trol Buisson and Richard (2005). Given an integer d > 1, we
define the lifted system Σsd

Y to be

y+ = Aiy + bi, y ∈ Zi, (10)

where Ai, bi are generated as in (5) for each i = 1, ...,M . The

sets Zi = {y ∈ R
N : f

⊤

i,jy ≤ wi,j , j = 1, ..., pi} are the
corresponding lifted sets generated by the coefficients of the
monomials of fi,j(x) of Ci, i = 1, ...,M , j = 1, ..., pi. We
observe that Zi, i = 1, ...,M are polyhedra.

Proposition 1. Consider the system (9), the state constraint set
X ⊂ R

n (7), a set S ⊂ R
n, an integer d > 1 and the

corresponding lifted set SY ⊂ R
N , N =

(

n+d
d

)

− 1. The
following hold.

(i) Assume Ci, i = 1, ...,M are nonsingular. Then, it holds
that F(Σsd,S) = lower(F(Σsd

Y ,SY)).
(ii) B(Σsd,S) = lower(B(Σsd

Y ,SY)).
Proof (i) We have by Fact 1(i), (ii), that

lower(F(Σsd
Y ,SY)) = lower(∪Mi=1{Aiy + bi : y ∈ SY ∩ Zi})

= ∪Mi=1 lower({Aiy + bi ∈ V : y ∈ SY ∩ Zi}).



We show that for any i ∈ {1, ..,M} and any y ∈ R
N such

that Aiy + bi ∈ V it necessarily follows that 2 y ∈ V . Since

Aiy+bi ∈ V , there is a vector z ∈ R
n such that Aiy+bi = z[d!].

Let x ∈ R
n such that Cix + ei = z. Consequently, (Cix +

ei)
[d!] = Aiy+ bi, or, Ai(x

[d!]− y) = 0, or x[d!]− y belongs to
the nullspace of Ai. Since Ai is block diagonal, its eigenvalues
are equal to the union of the sets of eigenvalues of the matrices

C
[j]
i , j = 1, ..., d. Since all C

[j]
i are invertible, see e.g., Parillo

and Jadbabaie (2008), Ai is invertible as well. Consequently,

y = x[d!] and y ∈ V . Thus, we have

lower(F(Σsd
Y ,SY))

= ∪Mi=1 lower({Aiy + bi ∈ V : y ∈ (SY ∩ V) ∩ (Zi ∩ V)})
= ∪Mi=1 lower({Aiy + bi : (∃x ∈ S ∩ Ci : y = x[d!]})
= ∪Mi=1F(Σi,S ∩ Ci)) = F(Σsd,S),

where Σi accounts for the system x+ = Cix+ ei.

(ii) Fom Fact 1(i), (ii) and the fact that V is by construction
invariant with respect to (10), we have that

lower(B(Σsd
Y ,SY)) = lower(∪Mi=1{y ∈ Zi : Aiy + bi ∈ SY})

= lower(∪Mi=1{y ∈ Zi ∩ V : Aiy + bi ∈ SY ∩ V})
= lower(∪Mi=1 (B(Σi,S) ∩ Ci)) = B(Σsd,S).�

An immediate corollary from Proposition1 and Theorem 1 is
that Smax = lower(Smax,Y), where Smax and Smax,Y are the
maximal invariant sets of (9) and (10) respectively.

Proposition 1 suggests that reachability analysis is possible by
set operations involving (unions of) polyhedral sets. This is a
significant advantage since one can perform efficiently reach-
ability operations on piecewise affine systems using standard
tools, e.g., Rakovic et al. (2004). Dealing with the case of
switching affine systems under constrained switching is also
possible by extending Proposition 1 in the direction of multi-
set invariance (Athanasopoulos et al. (2017)).

4. UNCERTAIN SYSTEMS

In this section we focus on the system Σλ of the form

x+ = C(λ)x + e(λ), (11)

where

C(λ) =

nλ
∑

i=1

λiCi, e(λ) =

nλ
∑

i=1

λiei,

and Ci ∈ R
n×n, ei ∈ R

n, i = 1, ..., nλ. The variable λ takes
values from a compact semialgebraic set, i.e., λ ∈ L, where

L = {λ ∈ R
nλ : li,j(λ) ≥ 0, i = 1, ..., pj, j = 1, .., dλ} ,

(12)
where dλ denotes the maximum degree of monomials ap-
pearing in the description of L. For example, there are p1
linear inequalities li,1(λ) ≥ 0. This setting covers several
uncertainty types, e.g., polytopic uncertainties with L =
{λ ∈ R

nλ : λ ≥ 0,
∑nλ

i=1 λi = 1} and ellipsoidal uncertainties

with L =
{

λ ∈ R
n : ‖λ‖∞ ≤ 1,

∑n
i=1 λ

2
i = 1

}

. We consider

an integer d > 1 and the corresponding lifted system Σλ
Y

y+ = A(λ)x + b(λ). (13)

The pair (A(λ), b(λ)) has a polynomial dependence on the un-
certainty vector λ. Specifically, it is a function of monomials of

2 V is backwards invariant with respect to (10).

λ up to a maximum degree d. First, we identify the interrelation
between reachability operations on the system and the lifted
system.

Proposition 2. Consider the system Σλ (11), a set S ⊂ R
n,

an integer d > 1 and the corresponding lifted set SY ⊂ R
N ,

N =
(

n+d
d

)

− 1. The following hold.

(i) F(Σλ,S) ⊆ lower(F(Σλ
Y ,SY)). The relation holds with

equality if C(λ) is invertible for all λ ∈ L.
(ii) B(Σsd,S) = lower(B(Σsd

Y ,SY)).
Proof (i) We have

lower(F(Σλ
Y ,SY)) = lower(∪λ∈L{A(λ)y + b(λ) : y ∈ SY})

= lower(∪λ∈L{A(λ)y + b(λ) ∈ V : y ∈ SY})
⊇ lower(∪λ∈L{A(λ)y + b(λ) ∈ V : y ∈ SY ∩ V})

which is equal to F(Σλ,S). The proof of the second part of the
statement follows similar steps as in Proposition 1(i).

(ii) Since V is invariant for the lifted system (13), we have

lower(B(Σλ
Y ,SY))

= lower(∩λ∈L{y ∈ V : A(λ)y + b(λ) ∈ SY})
= ∩λ∈L{x ∈ R

n : C(λ)x + e(λ) ∈ S} = B(Σλ,Y).�

The matrix A(λ) and vector b(λ) from (5) consist of blocks that
are functions of the monomials of λ, up to a maximum degree
d. Consequently, it is very difficult to have a computationally
efficient expression of the forward and backward reachability
maps for the lifted system, even when Y is polytopic. For this
reason, we propose to compute instead reachability operations

by overapproximating the lifted set L[d!]. One can use gen-
eral techniques for approximating semialgebraic sets, see, e.g.,
Cerone et al. (2012) for overapproximations with polyhedral
sets and Dabbene et al. (2017) for the general case. However,
as the specific setting involves intersections of the Veronese sur-
face with polyhedra, we propose an overapproximation scheme
that exploits this particular set structure. To this purpose, let Q
denote the set of polynomials {li,j(·)} that define L (12), i.e.,
Q = {li,j(·) : i = 1, .., pj, j = 1, ..., dλ} and Ii denote the set
of pairs of vectors

Ii :=







(γ, δ) : lγj ,δj (·) ∈ Q,
nk
∑

j=1

δj = i







. (14)

Each pair of the elements of these vectors, e.g., (γk, δk), γk ∈
R

nk , δk ∈ R
nk , 1 ≤ k ≤ d, corresponds to a polynomial

lγi,δi(λ) such that the product lγ1,δ1(λ)lγ2,δ2(λ) · · · lγnk
,δnk

(λ)
is a polynomial of degree i.

We denote with Li, i = 1, ..., dλ, the semialgebraic sets defined
by the products of the polynomial inequalities in L of degree i

Li :=







λ ∈ R
nλ : (γ, δ) ∈ Ii,

nk
∏

j=1

l(γj,δj)(λ) ≥ 0







. (15)

We let Vλ denote the Veronese surface on the lifted space in-

duced by dλ, i.e., Vλ :=
{

z ∈ R
Ndλ :

(

∃λ ∈ R
nλ : z = λ[dλ!]

)}

where Ndλ
=

(

nλ+dλ

dλ

)

− 1. We organize a few observations

below.

Proposition 3. Consider the set L (12), the sets Li (15), i =
1, ..., dλ and the corresponding lifted sets YL and YLi

in the

lifted space R
(nλ+dλ

dλ
)−1

. Let L =
⋂

i∈{1,...,dλ}
Li and YL =

⋂

i∈{1,...,dλ}
YLi

. The following hold.



(i) L = L.
(ii) YL ⊂ YL.

(iii) YL ∩ Vλ = YL ∩ Vλ.
Proof (i) By construction, it holds that L ⊆ ⋂

i∈{1,...,dλ}
Li

since λ ∈ L implies li,j(λ) ≥ 0 which in turn implies
that any combination of products li,j(λ) remains nonnegative.
Moreover,

⋂

i∈{1,...,dλ}
Li ⊆ L since for each j ∈ {1, ..., dλ}

the inequalities li,j(λ) ≥ 0 hold true in the set Lj . Thus,

L = L. Item (ii) follows by construction of the lifted set
(Definition 5), while (iii) follows directly from (i) and (ii). �

In the case YL is not bounded, one can add bounding hyper-

planes to its description and define a compact set Y ′

L with

the property Y ′

L ∩ Vλ = YL ∩ Vλ. For more information see
(Athanasopoulos and Jungers, 2016a, Appendix).

Let Σ
λ

Y denote the system in the lifted space R(
n+d

d )−1

y+ = A(λ)y + b(λ), (16)

where λ ∈ YL. The corollary result below is a consequence of
Proposition 3 and Proposition 2.

Corollary 1. Consider the system Σλ (11), a set S ⊂ R
n, an

integer d > 1 and the corresponding lifted set SY ⊂ R
N ,

N =
(

n+d
d

)

− 1 and system Σ
λ

Y . The following hold.

(i) F(Σλ,S) ⊆ lower(F(Σλ

Y ,Sy)).
(ii) B(Σsd,S) ⊇ lower(B(Σλ

Y ,Sy)).

5. SYSTEMS WITH INPUTS

We consider the simplest form of (1) that includes input signals,
namely linear systems with the update rule

x+ = Cx+Du, (17)

with x ∈ X ⊂ R
n, u ∈ U ⊂ R

m, where X is a semialgebraic
set. We consider U to be polyhedral for simplicity. Specifically,
by setting e = Du in (4), one can see that the corresponding
lifted matrix and vector (5) are polynomial functions of the
inputs. The lifted system is expressed by

y+ = A(u)y + (Bu)[d!], (18)

with the elements of A(u) being functions of monomials of the
input vector u of at most degree d. Starting from a controlled
invariant polyhedral set Y in the lifted space, we identify an
input vector for which there corresponds at least one vector that
can be transfered to Y in one step by following the lifted system
dynamics. For linear systems, see, e.g., Athanasopoulos et al.
(2014a), this allows to add at each step the convex hull of the
added vector with the controlled invariant set, thus leading to an
enlarged polyhedral set. While this is not the case for the lifted
system (18), we can exploit the fact that for a fixed input (18)
becomes affine. Consequently, we can add backward reachable
sets toY which are unions of polytopes. The proposed approach
is shown in algorithmic fashion in Algorithm 1.

A few remarks are in order: The are several ways to compute
an initial controlled invariant set Y0 for the lifted system (18).
For example, one can first find a stabilizing linear controller
and a corresponding admissible controlled invariant set for the
linear system (17). Consequently, Y0 can be computed as the
maximal invariant set of the closed-loop lifted system (which
remains linear).

Algorithm 1 Inputs: System (17), (18), X , U , k1 > 1, k2 > 1.
Outputs: Enlarged controlled invariant set Z .

1: Compute lifted system (18), lifted set Y , an initial controlled
invariant set Y0, set i← 0, c1 ← 0
2: while i < k1 and c1 = 0
3: Solve: maxy,u dist(y,Yi)

s.t. (i) u ∈ U ,
(ii) y ∈ Y ,
(iii) A(u)y + (Bu)[d!] ∈ Yi

4: Σy⋆ : y+ = A(u⋆)y + (Bu⋆)[d!]

5: j ← 0, S0 ← Yi, c2 ← 0
6: while j < k2 and c2 = 0
7: Sj+1 ← B(Σy⋆ ,Sj) ∩ Y
8: if Sj+1 ⊆ ∪jSj
9: c2 ← 1
10: end
11: j ← j + 1
12: end
13: Yi+1 = Yi ∪j Sj
14: if Yi+1 = Yi
15: c1 ← 1
16: end
17: i← i+ 1
18: end
19: Z ← lower(Yi)
At the beginning of each iteration (Line 2), an optimization
problem (Line 3) is solved that retrieves a vector y⋆ that can
be transferred in one step to Yi with the admissible input
u⋆. We note that constraints (i), (ii) can be translated to a
set of linear inequalities and condition (iii) is equivalent to
the satisfaction of polynomial inequalities. Consequently, the
optimization problem can be solved using Sum of Squares
programming, by formulating it first as a feasibility problem,
see e.g., Prajna et al. (2002), Papachristodoulou and Prajna
(2005). The objective function in Line 3, namely the distance
function with respect to the set Yi is a nonlinear function of
y. However, since Yi is a polytope (or a union of polytopes)
we can solve instead a set of optimization problems with linear
objective functions. Each such problem aims to maximize the
distance of the vector y from a facet of the polytope Yi(or from
a facet of a polytope included in the description of Yi), see, e.g.,
Athanasopoulos et al. (2014a).

By fixing the input to be equal to u⋆, we retrieve in Line 4 an
affine system in the lifted space. At each iteration of the loop in
Lines 6− 11 the set of vectors that can be brought to the set Yi
in at most j iterations with the input u⋆ is calculated, while all
such states are added to Yi in Line 13. We underline that since
Sj are unions of polytopes, Yi is a union of polytopes as well.

6. CONCLUSIONS

We studied the reachability analysis for general linear dynam-
ics, including uncertainties and inputs, when the involved sets
are semialgebraic. We lifted the system in a higher dimensional
state space induced by the Veronese embedding and associated
the reachability mappings of the lifted system with the ones
of the original. Consequently, we established the relationship
between the minimal and maximal invariant sets of the two
systems as well. By formulating simple equivalence results, we
showed that in some cases we can perform exact reachability,
while in others we can utilize in a straightforward manner
approximations that exploit the structure of the lifted nonlinear



system. The proposed approach can be potentially followed in
a variety of control problems, for example in path planning,
obstacle avoidance and sliding mode control.
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