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Abstract: Model Predictive Control (MPC) is a well consolidated technique to design optimal
control strategies, leveraging the capability of a mathematical model to predict the system’s
behavior over a predictive horizon. However, building physics-based models for large scale
systems, such as buildings and process control, can be cost and time prohibitive. To overcome
this problem we propose in this paper a methodology to exploit machine learning techniques (i.e.
regression trees and random forests) in order to build a state-space switched affine dynamical
model of a large scale system only using historical data. Finite Receding Horizon Control (RHC)
setup using control-oriented data-driven models based on regression trees and random forests is
presented as well. A comparison with an optimal MPC benchmark and a related methodology is
provided on an energy management system to show the performance of the proposed modeling
framework. Simulation results show that the proposed approach is very close to the optimum and
provides better performance with respect to the related methodology in terms of cost function
optimization.

Keywords: Data-driven modeling, data-driven model predictive control, machine learning,
switched systems.

1. INTRODUCTION

Model Predictive Control (MPC) is a well known control
strategy used to design optimal control actions to optimize
desired system performance while guaranteeing a desired
system behavior. To provide such an optimal control strat-
egy, MPC uses mathematical models to predict system
behavior over a horizon. MPC has been widely applied
in past years to control a large variety of systems, as for
example energy systems such as smart buildings, smart
grids and power systems Ma et al. (2015); Oldewurtel
et al. (2012); Maasoumy et al. (2014); Iovine et al. (2017);
Venkat et al. (2008); Kennel et al. (2013). However, creat-
ing a physics-based models for large-scale systems, as the
ones mentioned above, can be cost and time prohibitive
Žáčeková et al. (2014); Sturzenegger et al. (2015). To
overcome this issue, a possibility is to use machine learning
algorithms to create models using only historical data
available to the system. Several works, Macarulla et al.
(2017); Afram et al. (2017); Ferreira et al. (2012) and
others, deal with this problem and use machine learning
algorithms to construct data-driven models to be used for
control. Nevertheless, none of these works addressed the
problem of creating data-driven state models only using
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data, that could be used to predict the state evolution over
a horizon in an MPC problem formulation. To the best
of authors’ knowledge, such problem has been addressed
for the first time in Behl et al. (2016), where data-driven
models, built using regression trees-based algorithms, have
been developed to enable one-step lookahead closed-loop
predictive control for the demand-response problem in
buildings. This approach has been extended in Jain et al.
(2017), where the authors proposed a regression trees
and random forests-based Data Predictive Control (DPC)
strategy, that implements finite Receding Horizon Control
(RHC) over an horizon of arbitrary length. However, both
the aforementioned approaches make use of data-driven
static models, where the input-output relation is repre-
sented by affine functions. As a consequence, such mod-
eling framework does not take into account the presence
of an internal state evolution and loose the information,
over the prediction horizon, of the past inputs applied to
the system. This translate in a lack of internal consistency
of the model and in a loss of control performance, as we
will show in the simulations. Furthermore, due to the lack
of an internal state, system’s properties, such as stability,
structural properties, etc., cannot be studied.

Main Contribution. The goal of this paper is to provide
a new methodology to create a state-space switched affine
dynamical model of a system using only historical data,
leveraging regression trees and random forests, and with-
out any knowledge about its physics-based modeling. We
then use this model to setup an MPC problem to optimally
control the system’s behavior. The idea is to bridge ma-



chine learning and control to build control-oriented models
that can be used to provide system guarantees. This mod-
eling technique has the advantage to keep the simplicity of
the model identification methodology used to create data-
driven models for DPC, while guaranteeing the presence of
an internal state typical of state-space models. More pre-
cisely, we derive a Switched Affine (SA) data-driven model
using regression trees and random forests algorithms. One
of the main reasons for choosing regression trees resides
in the fact that, other than providing good model accu-
racy, they are by design highly interpretable, which is a
fundamental desirable quality in any model. We then use
this technique to setup an MPC problem both for the
model obtained using Regression Trees (SAMPC-RT) and
for the model obtained using Random Forests (SAMPC-
RF). To show the validity of our approach, we compare
our methodology with DPC using a bilinear model of a
building with 12 states, 4 inputs and 8 disturbances, whose
parameters were identified using experiments on a building
in Switzerland (Oldewurtel (2011)). As an optimal refer-
ence to compare our approach to, we consider a benchmark
MPC controller with perfect knowledge of the model.
We show that the proposed approach outperform DPC
in terms of cost function minimization, providing results
that are closer to the optimum. Although we said this
approach fits well for large-scale systems, where obtaining
a mathematical model can be prohibitive, we specifically
consider in this paper the aforementioned model, which
we have a formulation of, otherwise a comparison with the
optimal solution would not be possible. The application
to more complex systems is part of our future work. In
Section 2 we briefly recall the DPC formulation. In Section
3, as the main contribution of this paper, we present a
new methodology to derive, starting from a set of data,
switched affine models to capture system’s dynamics, and
setup a Model Predictive Control problem that uses such
data-driven model. In Section 4 we provide a comparison
of the proposed methodology to DPC and to the MPC
benchmark in a building automation case study. A more
complete version of this paper can be found in the technical
report Smarra et al. (2018b). We denote by I and 0
respectively the identity matrix and a matrix with all the
entries equal to 0 of appropriate dimensions, by det(A) the
determinant of matrix A, by

⊎
the disjoint union, and by

|S| the cardinality of the set S.

2. DATA PREDICTIVE CONTROL

In this section we briefly recall first the concept of re-
gression trees partitioning, and then the concept of DPC
provided in Jain et al. (2017). This will be useful to both
better understand and compare the approach we want to
propose. The main idea is to create system models using
machine learning algorithms (in the specific case, regres-
sion trees and random forests) starting from data, that can
be used in a receding horizon control scheme. Let a dataset
(X ,Y), where X = {sx1 , . . . , sx|X |} is the set of predictor

variables (or features) samples and Y = {sy1, . . . , s
y
|X |} is

the set of response variables (system outputs) samples, be
given. Each sample in the dataset corresponds to a mea-
surement over time of system’s variables. The regression
trees algorithm creates a tree structure T by partitioning
the set X into smaller regions, the leaves of the tree, follow-
ing specific rules Breiman et al. (1984). Each leaf i contains
a certain number of samples from X . In particular, let
`i ⊂ X , with i = 1, . . . , p, be the set of predictor variable
samples contained in the ith leaf of T . The leaves of T form
a partition of X : X =

⊎p
i=1 `i, (`α ∩ `β = ∅, ∀α 6= β).

Then, the algorithm associates to each leaf `i a prediction

ŷi as the average of the response values associated to
each sample in `i. This algorithm is known as CART
(see Breiman et al. (1984) for more details). However,
since the prediction provided by the tree is an averaged
value, the learning procedure described above needs to be
modified to be applied in a RHC problem setup. To this
aim, the following approach has been addressed in Jain
et al. (2017).

Let us consider X as the set containing control inputs
u ∈ Rm, disturbances d ∈ Rr and state variables x ∈
Rn, and Y as the set containing the output variable
y ∈ R. Without any loss of generality and for the sake
of simplicity, we consider only a single output, but the
discussion can be generalized considering different trees
for different outputs, as shown in Smarra et al. (2018a),
or multi-output trees, as shown in Jain et al. (2018).
Each sample in the dataset is a vector containing the
measured values of the variables at instant k. The set
X = {Xc,Xd} is partitioned into set Xc = {sc1, . . . , sc|X |},
of data associated to the m control variables, i.e. sck =
[u1(k), . . . , um(k)], and set Xd = {sd1, . . . , sd|X |}, of data

associated to the r + n disturbance and state variables,
i.e. sdk = [d1(k), . . . , dr(k), x1(k), . . . , xn(k)]. For Y =
{sy1, . . . , s

y
|X |}, we have syk = y(k). The training process

to grow a tree T is divided in 2 steps: 1) the tree is
trained only using Xd, instead of X . It is important to note
that besides external disturbances, Xd can also contain
past terms of the output Y; 2) affine function models are
fit only as a function of variables in Xc for each leaf `i,
i.e. only using samples sck, s

y
k ∈ `i, as we will show in

Equation (1). This process is illustrated in the left side
of Figure 1. The same methodology can be applied to
Random Forests. The basic idea of the random forests
algorithm (Breiman (2001)) is to grow multiple trees,
indeed a forest, considering different random subsets of
the dataset to train each tree. The prediction is given
by averaging the response of all the trees in the forest,
Breiman (2001). This reduces the overall variance in the
prediction and mitigates the effect of the overfitting. The
price to pay for the identification accuracy improvement is
an increase in the computational complexity. In this paper
both approaches are considered. To obtain a model that
can be used in a RHC problem with predictive horizon of
arbitrary length N , this procedure is used to grow multiple
trees T1, . . . , TN . Each tree Tj is used to predict system’s
response at the jth step of the horizon. We will discuss this
more in detail in the following sections for both Regression
Trees and Random Forests.

2.1 DPC-RT: DPC with Regression Trees

Without any loss of generality, and for the sake of simplic-
ity, we consider n = 1, but the results can be extended to
multiple responses considering multiple trees, i.e. one tree
per state. The idea is to predict output y over an horizon of
length N given the state measurement and the disturbance
forecast at the current step. Applying the methodology
illustrated above, it is possible to build N regression trees
Tj , j = 1, . . . , N , and associate to each leaf ij of each tree
the following affine static model:

y(k + j) = βij [1 u(k) · · ·u(k + j)]>, ∀ij , ∀j, (1)

where βij ∈ Rjm+1 is obtained by fitting data in the leaf.
Once these models are created, given the current state
measurement and the prediction of the disturbance, i.e.
the values of the variables in Xd, in run-time, at each
instant k, we can narrow down to a leaf of each tree Tj to
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Fig. 1. Separation of variables. Step 1: Tree T1 is trained
only on the disturbances Xd as the features. Tree T2
uses both the disturbances Xd and the control vari-
ables Xc for splitting and is thus not computationally
suitable for control. Step 2: In the leaf `ij of trees Tj , a
linear regression model parametrized by βij is defined
as a function only of the control variables.

find coefficients βij , for j = 1, . . . , N , to obtain the linear
model (1) for each step of the horizon (see Algorithm 1
in Jain et al. (2017) for details). This is used to solve the
following RHC problem

Problem 1.

minimize
uk

N∑
j=0

y2
k+jQ+ u>k+jRuk+j + λεj

subject to yk+j = βij [1 uk · · ·uk+j ]
>

uk+j ∈ U
|yk+j | ≤ ȳ + εj

εj ≥ 0, j = 0, . . . , N,

where slack variables εj ensure recursive feasibility of the
algorithm. This problem is solved as in classical MPC. At
each time step the optimal u∗k, . . . , u

∗
k+N are computed and

only the first one is applied as control input, i.e. u(k) = u∗k.

2.2 DPC-RF: DPC with Random Forests

The goal in DPC-RF is to replace model (1) in Problem 1
with the following model obtained using Random Forests:

y(k + j) = Θij [1 u(k) · · ·u(k + j)]>, ∀ij , ∀j, (2)

where Θij ∈ Rjm+1 is obtained by simply averaging out all
the coefficients from all the trees in the forest j. Both DPC-
RT and DPC-RF will be used in Section 4 to compare the
methodology we propose in the next section.

3. DATA-DRIVEN SWITCHED AFFINE MODEL

The DPC modeling framework, although simple, is char-
acterized by two main drawbacks: 1) the models in the
leaves are affine functions that provide input-output static
relations as described in (1); 2) the current state of the
system is not considered by the model equation to predict
the system’s evolution. Basically, in the DPC, system mod-
eling does not take into account an internal state evolution,
which is a fundamental characteristic in control systems
theory. The scope of this section is to address this issue
providing a data-driven state-space modeling framework
using regression trees and random forests. To this aim we
leverage the concept introduced in Section 2, i.e. splitting

the training set, and replace the affine static models (1)
in the leaves with LTI models, obtaining the following
switched affine system

x(k + 1) = Aσkx(k) +Bσku(k) + fσk , (3)

where σk : N → {i1, . . . , iN} is an exogenous signal,
that depends on measured values of variables in Xd, and
drives the switching rule among the leaves. We will see
in Section 3.2 that this task is not trivial, since replacing
the affine functions in (1) with LTI models is not enough
to guarantee an internal state evolution, so we propose
an extension of the state-space to overcome this problem.
More precisely, the rest of this section is organized in 3
steps: 1) in Section 3.1 we derive, for each leaf of each
tree, a model that provides the prediction y(k + j) as
an affine function of the internal state at time k and of
the inputs at time k, . . . , k + j, using regression trees;
2) in Section 3.2 we derive, from the model above, an
equivalent switched affine system as in (3), and setup an
MPC problem that will be used in Section 4 to show the
performance of the proposed approach with respect to
DPC and to the optimal MPC benchmark; 3) in Section
3.3 we extend the results obtained in Section 3.2 to the case
where matrices of (3) are estimated using random forests.
In this paper we consider the prediction of the state at next
steps as the response variable with its regression terms, i.e.
x(k + j + 1) = [y(k + j), y(k + j − 1), . . . , y(k + j − ν)]>.

3.1 Model generation

Let us consider a prediction horizon equal to N . We create
N trees Tj , j = 1, . . . , N , each one built using disturbance
d(k + ψ − δd), . . . , d(k + ψ), ψ ≤ j, and the current state
with regression terms y(k−1), . . . , x(k−1− δy) data from
Xd. Following the same idea of Section 2, we associate to
each leaf `ij of each tree Tj , an LTI model of the form:

x(k + j) = A′ijx(k) +

j∑
α=1

B′ij ,αu(k + α− 1) + f ′ij . (4)

The reason for including in the identification matrices
B′ij ,α that multiply past inputs, is to enforce the prediction

accuracy that regression trees can provide. Matrices A′ij ,

B′ij ,α and f ′ij are identified using the least square method

defined in Problem 2 below. To this aim we consider the
experiments associated to the samples sk1 , . . . , skε in the
leaf `ij at time instants k1, . . . , kε, and their past ν values.
In particular, for each leaf `ij , let us define

Λij =



1 · · · 1
x(k1) · · · x(kε)

...
...

x(k1 − ν) · · · x(kε − ν)
u1(k1) · · · u1(kε)

...
...

um(k1) · · · um(kε)
...

...
u1(k1 + j) · · · u1(kε + j)

...
...

um(k1 + j) · · · um(kε + j)



>

ξij =



f
a1

.

..
aν
b1,1

...
bm,1

...
b1,j

...
bm,j



(5)

λij =
[
x(k1 + j + 1) · · · x(kε + j + 1)

]>
(6)

We use this setup to formalize the following problem to
estimate matrices in (4).



Algorithm 1 switched LTI model

1: Design Time (Offline)
2: procedure Training LTI models in leaves
3: Set Xc ← manipulated features
4: Set Xd ← non-manipulated features
5: Build N predictive trees Tj using (Y,Xd)
6: for all trees Tj do
7: for all leaves `ij of Tj do
8: Solve Problem 2
9: Create A′ij , B

′
ij ,ι

and f ′ij as in (9)

10: end for
11: end for
12: end procedure

Problem 2.

minimize
ξij

‖ Λij ξij − λij ‖
2
2

subject to Γeq ξij = γeq (7)

Γdiseq ξij = γdiseq (8)

where (7) and (8) are used to constraint elements in ξij
due to practical constraints of the plant. Elements of ξij ,
obtained solving Problem 2, are used to build matrices
A′ij , B

′
ij ,ι

and f ′ij in (4) as follows

A′ij =


a1 a2 · · · aν
1 0 · · · 0
0 1 · · · 0

...
0 0 · · · 0

 B′ij ,ι =


b1,ι · · · bm,ι
0 · · · 0
0 · · · 0

...
0 · · · 0

 f ′ij =


f
0
0
...
0


(9)

The procedure to compute matrices in (9) is summarized
in Algorithm 1. In the following section we use such
matrices to build our switched affine state-space model.

3.2 SAMPC-RT: data-driven Switched Affine MPC with
Regression Trees

The scope of this section is to derive a state-space model
formulation starting from the dynamical model (4), that
can be used, other than to setup an MPC problem, to
apply classical results in control theory, in particular for
switched affine systems. In Smarra et al. (2018b), we show
that this framework can not be obtained using model
(3). As a consequence, to translate the model built as in
Equation (4) into a switched affine dynamical system as
in Equation (3), we define the following extended state

xe =

[
x̄
u−

]
, (10)

composed by the system state x̄ and input dummy vari-
ables u− = [u−N+1 · · · u−2 u−1]>, which represent the
past values of the inputs applied to the system during the
previous N − 1 steps. Defining the following state-space
representation

xe(k + 1) = Aeσkxe(k) +Beσku(k) + feσk , (11)

where

Aeσk =


Aσk B̄σk,−N+1 B̄σk,−N+2 · · · B̄σk,−1

0 0 I · · · 0

. . .

0 0 0 · · · I
0 0 0 · · · 0

 (12)

Beσk =
[
B̄>σk,0 0 · · · 0 I

]>
(13)

feσk =
[
f̄>σk 0 · · · 0

]>
(14)

σk ∈ {i1, . . . , iN} ∀k, (15)

we can state the following proposition.

Proposition 1. Let A′ij , B
′
ij ,ι

and f ′ij , j = 1, . . . , N , ι =

1, . . . , j, be given as output of Algorithm 1. If A′ij is

invertible for j = 2, . . . , N − 1 , then there exist Aσk ,
B̄σk,µ and f̄σk , ∀µ = 1, . . . , N−1, such that, for any initial
condition x0, if x̄(k) = x(k) = x0, then x̄(k + j) = x(k +
j), ∀j = 1, . . . , N .

As derived in the proof of Proposition 1 in Smarra et al.
(2018b), matrices Aσk , B̄σk,µ and f̄σk are as follows:

f̄ij = f ′ij −A
′
ij
A′−1
ij−1

f ′ij−1
(16)

Aij =

{
Ai1 if j = 1

A′ijA
′−1
ij−1

if j > 1
(17)

B̄ij ,−µ =


0 if µ ≥ j
B′ij,j−µ −A

′
ij
A′−1
ij−1

B′ij−1,j−µ
if 0 < µ < j

B′ij,j if µ = 0

(18)

The switched affine model (11) can be now used to
formalize the following MPC problem.

Problem 3.

minimize
u

x>e,k+NPNxe,k+N +

N−1∑
j=0

x>e,k+jQxe,k+j + u>k+jRuk+j

subject to xk+j+1 = Aeσkxk+j +Beσkuk+j + feσk
xk+j ∈ X , uk+j ∈ U
xk+N ∈ Xf
xk = x(k), j = 1, . . . , N − 1.

The model obtained in (11) with our methodology is a
switched affine dynamical system. Hence several results
available in literature can be used to investigate systems’
properties such as stability, controllability, stability and
recursive feasibility for Problem 3 (see Smarra et al.
(2018b) and references therein).

3.3 SAMPC-RF: data-driven Switched Affine MPC with
Random Forests

As for Section 2.2, the idea here is to estimate matricesA′ij ,

B′ij and f ′ij using Random Forests instead of Regression

Trees. To this aim, let us consider N Random Forests Fτ ,
τ = 1, . . . , N . For each tree Tj of the forest Fτ , we can
estimate a vector of parameters ξτij for each leaf `ij , solving

Problem 2 considering ξτij instead of ξij . With a small

abuse of notation, let us indicate by |Fτ | the number of
trees in the forest τ . Then, parameters to build matrices
in (9) can be obtained by averaging parameters in ξτij ,

∀j = 1, . . . , |Fτ |. Thus we obtain the following switched
affine system using Random Forests

xe(k + 1) = Aef,σkxe(k) +Bef,σku(k) + fef,σk . (19)



SAMPC-RF is setup replacing model (11) in Problem 3
with model (19).

4. CASE STUDY

For the comparison of our approach with respect to DPC,
we consider a bilinear building model developed at the
Automatic Control Laboratory of ETH, Zurich. It captures
the essential dynamics governing the zone-level operation
while considering the external and the internal thermal
disturbances. By Swiss standards, the model used for this
study is of a heavyweight construction with a high window
area fraction on one facade and high internal gains due
to occupancy and equipments Gyalistras and Gwerder
(2010). As we mentioned above our methodology fits well
for large-scale systems, where building a mathematical
model can be prohibitive. In order to provide a compar-
ison with an optimal MPC benchmark, in this paper we
validate our methodology considering a system for which
a dynamical model is available. We build our switched
affine dynamical model from the output data of Monte
Carlo simulations of such model. For our future work we
will consider complex building models, whose data can be
obtained using EnergyPlusTM (2000).

Model description. The bilinear model has 12 internal
states including the inside zone temperature Tin, the slab
temperatures Tsb, the inner wall Tiw and the outside
wall temperature Tow. The state vector is defined as

x := [Tin,T
(1:5)
sb ,T

(1:3)
ef ,T

(1:3)
in ]T . There are 4 control inputs

including the blind position B, the gains due to electric
lighting L, the evaporative cooling usage factor C, and the
heat from the radiator H such that u := [B, L,H,C]T . B
and L affect both room illuminance and temperature due
to heat transfer, whereas C and H affect only the tempera-
ture. The model is subject to 5 weather disturbances: solar
gains with fully closed blinds Qsc and with open blinds Qso,
daylight illuminance with open blinds Io, external dry-bulb
temperature Tdb and external wet-bulb temperature Twb.
The hourly weather forecast, provided by MeteoSwiss, was
updated every 12 hrs. Therefore, to improve the forecast,
an autoregressive model of the uncertainty was considered.
Other disturbances come from the internal gains due to
occupancy Qio and due to equipments Qie which were
assumed as per the Swiss standards (Merkblatt (2006)).
We define d := [Qsc,Qso, Io,Qio,Qie,Tdb,Twb]T . For fur-
ther details, we refer the reader to Oldewurtel (2011). The
model dynamics are given below. The bilinearity is present
in both input-state, and input-disturbance.

x(k + 1) = Ax(k) + (Bu +Bxu[xk] +Bdu[dk])u(k) +Bdd(k) (20)

Bxu[xk] = [Bxu,1x(k), Bxu,2x(k), . . . , Bxu,4x(k)] (21)

Bdu[dk] = [Bdu,1d(k), Bdu,2d(k), . . . , Bdu,4d(k)], (22)

with Bxu,i ∈ R12×12 and Bdu,i ∈ R12×8, ∀i = 1, 2, 3, 4. For
this study, we assume that the disturbances are precisely
known. We use MPC with this model to compare our
approach to. The solution obtained from MPC sets the
optimal benchmark, since it uses the exact knowledge
of the plant dynamics and thus the associated control
strategy is indeed the optimal strategy for the plant.

Goal. We want to minimize the energy usage, i.e. c>u,
while maintaining a desired level of thermal comfort. At
time step k, we solve the following continuously linearized
MPC problem to determine the optimal sequence of inputs
u∗.

Problem 4.

minimize
u

N∑
j=1

(
xk+j − xref

)>
Qj
(
xk+j − xref

)
+ c>u2

k+j−1 + λεj

subject to xk+j = Axk+j−1 +Buk+j−1 +Bddk+j−1

B = Bu +Bxu[xk] +Bdu[dk+j−1]

xk+j ∈ [xmin − εj , xmax + εj ]

uk+j−1 ∈ [umin, umax]

xk = x(k)

εj ≥ 0, j = 1, . . . , N − 1,
(23)

where Q ∈ R12×12 has all zero entries except for the
element (1, 1) associated to the zone temperature, c> ∈
R1×4 is proportional to the cost of using each actuator
and λ penalizes state bound violations. At each time step
only the first optimal input of the sequence is applied to
the system.

Training. As the output variable of the system for the
training, we consider the first component of x, i.e. y(k +
j) := x1(k+j+1). To train the trees Tj and the forests Fj ,
we consider weather disturbances, external disturbances
due to occupancy and equipments, and autoregressive
terms of the room temperature, i.e.

sdk = [d(k+ j−N), . . . , d(k+ j−1), x1(k), . . . , x1(k−δ)] ∈ Xd, (24)

where δ is the order of auto-regression. Finally, the inputs
are used to train both, the affine static models for DPC
and the LTI models for the switched MPC. The training
data was generated by simulating the bilinear model with
rule-based strategies for 10 months in 2007. May was
deliberately excluded for testing the DPC implementation.
For the simulation we chose δ = 6 and ν = 1.

Validation. We compare the prediction for the first time
step x1(k+1) and the 6-hour ahead prediction x1(k+6) for
a week in the month of May. The quantitative summary
of model accuracies is given in Table 1. We can see that at
step k + 1 the quality of the identification of the different
approaches is quite similar, except for the affine model
obtained with regression trees. Instead at step k + 6 the
switched affine model shows better approximation with
respect to the other approaches, although it is still close
to the others. As mention in Section 2, the models based
on regression trees show worse performance than the ones
obtained with random forests due to high variance. The
quality of the proposed approach will be more evident in
the closed-loop simulations, since, due to the presence of
the internal state, the switched affine model has memory
of the past inputs applied.

Closed-loop simulations. We simulated the data-driven
Switched Affine MPC Problem 3, with both model (11)
(SAMPC-RT) and model (19) (SAMPC-RF), and DPC
Problem 1, with both model (1) (DPC-RT) and model (2)
(DPC-RF) using the same cost function and constraints
of Problem 4. We compare the results against the MPC
benchmark setup in Problem 4. The results are shown in
Fig. 2. The performance is compared for 3 days in winter,
i.e. January 28-31 and 3 days in summer, i.e. May 1-
3. The sampling time in the simulations is 1 hour. The
control horizon N is 6 hours. The cooling usage factor C is
constrained in [0, 1], the heat input in [0, 23] W/m2, and
the room temperature in [19, 25] oC during the winter and



Model Prediction step NRMSE RMSE

Tree k + 1 0.027 0.79
Tree k + 6 0.034 0.99
SA-tree k + 1 0.013 0.39
SA-tree k + 6 0.035 1.02
Forest k + 1 0.012 0.36
Forest k + 6 0.033 0.97
SA-forest k + 1 0.013 0.40
SA-forest k + 6 0.030 0.88

Table 1. Quantitative comparison of NRMSE and

RMSE for the different models: affine static models

and switched affine LTI models identified with trees

and forests for different prediction steps.

(a) Room temperature. Random forests-based approaches
track the reference temperature better than regression trees-
based ones and provide smoother behaviour.

(b) Cumulative optimal cost after solving optimization.
SAMPC-RF shows best performance after the MPC.

Fig. 2. Comparison of optimal performance for 3 days in
January and 3 days in May.

[20, 26] oC during the summer. The optimization is solved
in MATLAB using CPLEX. The reference temperature
is chosen to be 22 oC. The optimized cost function is
shown in Figure 2(b). Results show that the SAMPC-
RF is the closest to the optimum, outperforming all the
other methods. SAMPC-RT also behave better than its
counterpart in DPC, but provides worse performace than
DPC-RF due to the high variance problem regression
trees are subject to. For the same reason, that brings to
model inaccuracy, the cost for regression trees model based
controllers blows up as one of the slack variables is non-
zero. The cumulative cost goes extremely high since the
parameter λ that weights bounds violation is setup to 103.
The room temperature profile is shown in Figure 2(a). We
can see also here that random forests based controllers
provide less spiked trajectories that are closer to the
optimum with respect to regression trees based controllers.
More details about disturbances and optimal inputs can be
found in Smarra et al. (2018b).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we provide a methodology to construct a
data-driven state-space switched affine model of a sys-
tem using regression trees and random forests using only
historical data. We setup an MPC problem and compare
the performance of our approach against another MPC
controller, designed using the actual physics-based model,
and against DPC controller, that uses static data-driven

models. We compare the results of the approaches on
a building energy management problem. We show that
our strategy, without using any physical model of the
system, is comparable in terms of optimal cost minimiza-
tion to MPC which requires a physics-based model, thus
bypassing the need for expensive physical modeling in the
complex systems like buildings. This new approach for
data-driven state-space switched affine model is also better
than our previous work on control with regression trees
and random forests that uses static models. This work is
a staring point for the following future directions. Future
work is focused on applying the proposed methodology
on a more complex and realistic EnergyPlus model, for
which building a model predictive controller is time and
cost prohibitive. We want also to consider problems where
stability is important, i.e. frequency control in a microgrid,
and address the problem of providing guarantees on the
system and on system properties.
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based predictive control for thermal comfort and energy savings in public

buildings. Energy and Buildings, 55, 238–251.

Gyalistras, D. and Gwerder, M. (2010). Use of weather and occupancy forecasts

for optimal building climate control (opticontrol): Two years progress report

main report. Terrestrial Systems Ecology ETH Zurich R&D HVAC Products,

Building Technologies Division, Siemens Switzerland Ltd, Zug, Switzerland.

Iovine, A., Damm, G., Santis, E.D., and Benedetto, M.D. (2017). Management

controller for a DC microgrid integrating renewables and storages. In 2017

IFAC World Congress.

Jain, A., Smarra, F., Behl, M., and Mangharam, R. (2018). Data-driven model

predictive control with regression trees-an application to building energy

management. ACM Transactions on Cyber-Physical Systems, 2(1), 1:21.

Jain, A., Smarra, F., and Mangharam, R. (2017). Data predictive control using

regression trees and ensemble learning. In Proceedings of the 56th IEEE

Conference on Decision and Control.

Kennel, F., Görges, D., and Liu, S. (2013). Energy management for smart

grids with electric vehicles based on hierarchical mpc. IEEE Transactions

on Industrial Informatics, 9(3), 1528 – 1537.

Ma, Y., Matuško, J., and Borrelli, F. (2015). Stochastic model predictive

control for building hvac systems: Complexity and conservatism. IEEE

Transactions on Control Systems Technology, 23(1), 101 – 116.

Maasoumy, M., Razmara, M., Shahbakhti, M., and Vincentelli, A.S. (2014).

Handling model uncertainty in model predictive control for energy efficient

buildings. Energy and Buildings, 77, 377 – 392.

Macarulla, M., Casals, M., Forcada, N., and Gangolells, M. (2017). Implemen-

tation of predictive control in a commercial building energy management

system using neural networks. Energy and Buildings, 151, 511–519.

Merkblatt, S. (2006). 2024: Standard-nutzungsbedingungen für die energie-und
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