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The Santa Claus Problem is an intricate exercise for concurrent programming. This paper outlines
the refinement steps to develop a highly efficient implementation with concurrent objects, starting
from a very simple specification. The efficiency of the implementation is compared to three other
languages.

1 Introduction

In 1994, Trono proposed the Santa Claus Problem as an exercise in concurrent programming [16]:

Santa Claus sleeps in his shop up at the North Pole, and can only be wakened by either all
nine reindeer being back from their year long vacation on a tropical island, or by some elves
who are having some difficulties making the toys. One elf’s problem is never serious enough
to wake up Santa (otherwise, he may never get any sleep), so, the elves visit Santa in a group
of three. When three elves are having their problems solved, any other elves wishing to visit
Santa must wait for those elves to return. If Santa wakes up to find three elves waiting at
his shop’s door, along with the last reindeer having come back from the tropics, Santa has
decided that the elves can wait until after Christmas, because it is more important to get his
sleigh ready as soon as possible. (It is assumed that the reindeer don’t want to leave the
tropics, and therefore they stay there until the last possible moment.) The penalty for the
last reindeer to arrive is that it must get Santa while the others wait in a warming hut before
being harnessed to the sleigh.

Trono’s original solution uses ten semaphores. The problem is indeed intricate: as Ben-Ari argues,
Trono’s solution assumes that a signalled process executes immediately: otherwise, when all reindeer
are signalled to proceed to the sleigh, some reindeer may still not be harnessed while others have already
finished delivering the toys [2]. A more robust solution would need additional semaphores for barrier
synchronization [1]. Ben-Ari argues that the rendezvous construct of Ada is particularly suitable for this
problem and compares a solution in Ada with one in Java using monitors. Downey proposes a solution
of a simplified problem employing only four semaphores, but makes the assumption that a signalling
process does not continue [9]; under some schedulers, e.g. the semaphore implementation of Python, the
first elf runs forever.

The Santa Claus Problem follows a line of whimsically named concurrency problems (see [9] for
a beautiful collection of those) that all are representative for specific aspects: here, these are priority
(the reindeer have priority over elves), multi-party synchronization (all reindeer have to be present to
engage with Santa and Santa engages either with reindeer or elves), barriers (all reindeer have to be
harnessed, then they jointly ride with Santa, then Santa dismisses them), and grouping (Santa consults
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elves one by one, but only if a group of three is present). The Santa Claus Problem has been used to
illustrate concurrency constructs, e.g. [3, 6, 7, 8, 13] and for comparing concurrency constructs [10].
Peyton Jones gives a solution in Haskell using software transactional memory [14]. Welch and Pedersen
present a process-oriented solution using Occam and discuss model-checking a CSP formulation of the
problem [17]. The reader is invited to compare these designs with the one proposed here.

This paper develops a solution using concurrent objects by a series of refinement steps. The thrust is
to start the development with a specification that is as simple as possible, to add details about Santa, the
reindeer, the elves, and their interaction in refinement steps, and to arrive at an implementation that is
comparable to other efficient implementations. This work is part of an ongoing research program in de-
veloping a highly efficient implementation [12, 18] of concurrent objects together with an accompanying
verification and refinement theory [15].

The refinement steps are presented rigorously, but are not formally proven to be correct. Our goal is
to argue for the potential of refinement with concurrent objects. Once the implementation of our language
is finalized, we plan to revisit the theory and complete the proofs.

The next section gives a brief overview of concurrent objects and their refinement. This is followed
by the development of a solution to the Santa Claus Problem, the timing results comparing four imple-
mentations, and a discussion.

2 Concurrent Objects

Concurrent objects here consists of fields, methods, and actions [4, 5, 11, 15]. Methods must be called to
execute but an action can execute on its own whenever its guards is true. Only one method or action can
execute at a time in one object, but all objects can execute concurrently. Objects communicate through
method calls; no separate mechanism is needed. For synchronization of objects, methods may also have
a guard, which can block the caller. Consider class Santa:

class Santa
var s: {Sleeping, Working} = Sleeping
method wakeup()

s = Sleeping→ s := Working
action

s = Working→ s := Sleeping

When object st is created by st := new Santa, the method wakeup can be called, st.wakeup(). The call
blocks if s 6= Sleeping and sets field s to Working otherwise. The single action of the object is executed
on its own when its guard is true, s = Working, and then sets field s to Sleeping. Thus this represents a
Santa who needs to be woken up externally, but will go to sleep on his own.

The guard of methods and actions of an object can depend only on fields of that object; the guard
cannot refer to fields of other objects or contain calls. This restriction is meant to allow for an efficient
implementation: all objects can evaluate their guards concurrently without interference; a guard can
change its value by execution with an object, hence guards only need to be reevaluated after a method or
action in that object executes.

All methods and actions are executed atomically, up to method calls. For example, if S is a statement
without calls, the sequence st.wakeup(); S ; st.wakeup() executes the first call st.wakeup() atomically,
then S atomically, then the second call st.wakeup() atomically. Using angular brackets to denote atomic
regions, this is equivalent to 〈 st.wakeup() 〉; 〈 S 〉 ; 〈 st.wakeup() 〉. Both calls to wakeup may block and
delay execution until the guard holds, i.e. Santa is sleeping again.
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In the refinement steps, subscripts are used to distinguish the different versions when needed. For exam-
ple, the field santa of class NorthPole0 below is referred to as santa0.

Specification: Santa’s Cycle

The activity at the North Pole centers around Santa. In the simplest form, Santa either sleeps or works.
This is represented by a class with one field for Santa’s state and two actions that switch between these
two states, whenever Santa feels like doing so.

class NorthPole0
var santa: {Sleeping, Working} = Sleeping
action santa = Sleeping→ santa := Working
action santa = Working→ santa := Sleeping

A single NorthPole0 is created:

np0 := new NorthPole0

Refinement: Splitting Santa’s Work

Santa’s work consists of either delivering toys or helping the elves: when Santa wakes up, he may either
go to state Delivering or Helping

class NorthPole1
var santa: {Sleeping, Delivering, Helping} = Sleeping
action santa = Sleeping→ santa := Delivering
action santa = Sleeping→ santa := Helping
action santa = Delivering→ santa := Sleeping
action santa = Helping→ santa := Sleeping

We assume that a single object np1 of class NorthPole1 is created. As the coupling invariant between
NorthPole0 and NorthPole1we take:

R1 =̂ santa0 = Working ≡ santa1 ∈ {Delivering, Helping}

For NorthPole0 to be refined by NorthPole1 we need to show

santa0 = Sleeping→ santa0 := Working vR1 santa1 = Sleeping→ santa1 := Delivering
santa0 = Working→ santa0 := Sleeping vR1 santa1 = Delivering→ santa1 := Sleeping

and similarly for the analogous actions involving Helping.

Refinement: Introducing Reindeer and Elves

For Santa to deliver the toys, he needs reindeer, and to help elves, he obviously needs elves. Abstractly,
reindeer are either back from vacation or not, represented by boolean variable b. Elves are either puzzled
or not, represented by boolean variable p. The action b := true ; deliver() represents the reindeer return-
ing and then calling deliver() to deliver the toys together with Santa. That call will block if Santa is not
in state Delivering, i.e. the action may get stuck in the middle, and similarly for elves. The action santa
= Sleeping ∧ b→ santa := Delivering represents the reindeer waking up Santa on their return. Note that
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the corresponding action of elves has ¬b as part of the guard, meaning that priority is given to reindeer
in case both vie for Santa’s attention.

class NorthPole2
var santa: {Sleeping, Delivering, Helping} = Sleeping
var b, p: boolean = false, false
method deliver()

santa = Delivering→ santa, b := Sleeping, false
method help()

santa = Helping→ santa, p := Sleeping, false
action b := true ; deliver()
action p := true ; help()
action santa = Sleeping ∧ b→ santa := Delivering
action santa = Sleeping ∧ p ∧¬ b→ santa := Helping

We assume that a single object np2 of class NorthPole2 is created. This refinement step is a superposition:
variable santa is unchanged, variables b and p are added. As the coupling invariant we take:

R2 =̂ (santa = Delivering⇒ b) ∧ (santa = Helping⇒ p)

That is, Santa can deliver only if the reindeer are back and can help the elves only if the elves are
puzzled. Each of the four actions of NorthPole2 has to refine the corresponding action of NorthPole
1. This refinement step involves “splitting atomicity”. A general rule for the introducing sequential
composition of atomic statements is, for any statements S,T,U and relation R:

〈S〉 vR 〈T 〉;〈U〉 ≡ skipvR 〈T 〉∧ 〈S〉 vR 〈U〉

To show that

santa = Delivering→ santa := Sleeping vR2

b := true ; 〈 santa = Delivering→ santa, b := Sleeping, false 〉

holds, this rule is applied, resulting in

1. skip vR2 b := true

2. santa = Delivering→ santa := Sleeping vR2 santa = Delivering→ santa, b := Sleeping, false

which is easy to see. Refinement of the remaining three actions is shown similarly.

Refinement: Santa’s Interactions with Reindeer and Elves

Santa can’t simply deliver the toys when the reindeer are back from vacation: they first need to be
harnessed before Santa can ride the sleigh. Likewise, the elves first have to enter Santa’s shop before
Santa can enlighten them. However, Santa rides the sleigh with all reindeer together, but consults the
elves one by one. For this, Santa switches between the states of Welcoming and Consulting three times
before going to state Sleeping. This formulation ensures the “safety” of Santa.

class NorthPole3
var santa: {Sleeping, Harnessing, Riding, Welcoming, Consulting} = Sleeping
var b: boolean = false
var p: 0 .. 3 = 0
method harness()
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santa = Harnessing→ santa := Riding
method pull()

santa = Riding→ santa, b := Sleeping, false
method enter()

santa = Welcoming→ santa := Consulting
method consult()

santa = Consulting→
p := p − 1 ; if p = 0 then santa := Sleeping else santa := Welcoming

action b := true ; harness() ; pull()
action p := 3 ; for e := 1 to 3 do (enter() ; consult())
action santa = Sleeping ∧ b→ santa := Harnessing
action santa = Sleeping ∧ p = 3 ∧¬ b→ santa := Welcoming

We assume that a single object np3 of class NorthPole3 is created. In this step, the values of variable
santa are extended, variable b is kept with the same meaning, variable p is generalized from boolean to
subrange type, and variable c is added. As the coupling invariant we take:

R3 =̂ (santa3 = Delivering ≡ santa4 ∈ {Harnessing, Riding}) ∧
(santa3 = Helping ≡ santa4 ∈ {Welcoming, Consulting}) ∧
p2 ≡ p3 = 3

Refinement: Separating Santa, Sleigh, Shop

So far, only one activity at the North Pole can happen at any time, as all actions are part of the single
North Pole object. This step splits the North Pole into three concurrent objects, Santa, Sleigh, and Shop.

class Santa4
var s: {Sleeping, Harnessing, Riding, Welcoming, Consulting} = Sleeping
var b: boolean = false
var p: 0 .. 3 = 0
method back()

b := true
method harness()

s = Harnessing→ s := Riding
method pull()

s = Riding→ s, b := Sleeping, false
method puzzled()

p := 3
method enter()

s = Welcoming→ s := Consulting
method consult()

s = Consulting→
p := p − 1 ; if p = 0 then s := Sleeping else s := Welcoming

action s = Sleeping ∧ b→ s := Harnessing
action s = Sleeping ∧ p = 3 ∧¬ b→ s := Welcoming

class Sleigh4(st: Santa)
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action st.back() ; st.harness() ; st.pull()

class Shop4(st: Santa)
action st.puzzled() ; for e := 1 to 3 do (st.enter() ; st.consult())

Santa is connected to the sleigh and shop in the initialization:

st := new Santa ; new Sleigh(st) ; new Shop(st)

This refinement step moves the state of the single NorthPole3 to the single Santa4 object. As the coupling
invariant we therefore take:

R4 =̂ np.santa = st.s ∧ np.b = st.b ∧ np.p = st.p

Refinement: Creating Reindeer and Elves

So far, reindeer and elves are accounted for, but don’t have a life of their own. Class Santa is unchanged,
class Sleigh is split into Sleigh and Reindeer, and class Shop is split into Shop and Elf. The role of Sleigh
is 3-stage barrier synchronization, i.e. waiting for all reindeer to be back before signalling that to Santa,
waiting for all reindeer to be harnessed before signalling that to Santa, and waiting for all reindeer to pull
before signalling that to Santa. Barrier synchronization is enforced by an integer counter for each stage
with how many arrivals at that stage are still expected. The counters are initialized and reset such that
repeated 3-stage synchronization is possible. Each reindeer now cyclically goes through getting back,
harnessing, and pulling. Likewise, each elf cyclically goes through being puzzled, entering the shop, and
consulting Santa. Note that puzzled of Santa is only called once for each group of three elves, enter is
called three times, and consult is called three times but doesn’t need a guard because it is only called by
an elf after calling enter.

class Sleigh5(st: Santa)
var s: {Idle, Back, Harness, Pull} = Back
var c: 0 .. 9 = 9
method back()

s = Back→ c := c − 1 ; if c = 0 then (s := Idle ; st.back() ; s, c := Harness, 9)
method harness()

s = Harness→ c := c − 1 ; if c = 0 then (s := Idle ; st.harness() ; s, c := Pull, 9)
method pull()

s = Pull→ c := c − 1 ; if c = 0 then (s := Idle ; st.pull() ; s, c := Back, 9)

class Reindeer5(sl: Sleigh)
action sl.back() ; sl.harness() ; sl.pull()

class Shop5(st: Santa)
var s: {Idle, Puzzled, Help} = Puzzled
var c: 0 .. 3 = 3
method puzzled()

s = Puzzled→ c := c − 1 ; if c = 0 then (s := Idle ; st.puzzled() ; s, c := Help, 3)
method enter()

s = Help→ st.enter()
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Repetitions
of Santa

Lime (guards) C (semaphores) Go (channels) Java (monitors)

10,000 0.03 / 0.03 / 0.00 0.87 / 0.26 / 1.18 0.08 / 0.12 / 0.01 6.38 / 2.48 / 5.30
100,000 0.21 / 0.21 / 0.00 8.82 / 2.50 / 12.0 0.77 / 1.18 / 0.06 60.3 / 21.6 / 52.0
1,000,000 2.03 / 2.03 / 0.01 93.0 / 24.8 / 123 7.51 / 11.6 / 0.55 ≈ 534 / 159 / 509

Table 1: Execution time in sec on AMD Ryzen Threadripper 1950X 16 core (32 threads) processor with
32 GB memory under Ubuntu 16.04. The compilers used are gcc 5.4.0, Java 9.0.4, Go 1.8.3 linux/amd64.
The times are reported as the average real / user / system times of 20 runs. Only a single run was used
for Java with 1,000,000 repetitions of Santa.

method consult()
st.consult() ; c := c − 1 ; if c = 0 then s, c := Puzzled, 3

class Elf5(sh: Shop)
action sh.puzzled() ; sh.enter() ; sh.consult()

Reindeer and elves are connected to the sleigh and shop by:

sl := new Sleigh(st) ; sh := new Shop(st) ;
for i := 1 to 9 do new Reindeer(sl)
for i := 1 to 10 do new Elf(sh)

We claim that Sleigh4 is refined by Sleigh5 together with Reindeer5: nine Reindeer5 objects are created,
each with an action. As the Sleigh5 object does not have actions, the refinement condition is that the sole
action of Sleigh4,

st.back() ; st.harness() ; st.pull()

is refined by the nondeterministic choice of all Reindeer5 actions,

[] r ∈ Reindeer • r.sl.back() ; r.sl.harness() ; r.sl.pull()

where #Reindeer = 9. Likewise Shop4 is refined by Shop5 together with Elf5.

4 Results

We have implemented an experimental compiler for Lime, a language that closely follows the above
theory of concurrent objects. Appendix A contains the Lime implementation of the Santa Claus Prob-
lem. The key contributions of the compiler are the management of dynamically growing stacks, the
efficient evaluation of method and action guards, a mapping of actions to coroutines, and a distribution
of coroutines onto processor cores. The details are in [18].

The Lime implementation is compared to implementations in C using semaphores of the Pthreads
library, in Go using channels, and in Java using monitors, see Appendix A. Table 1 shows the running
times for Santa with 9 reindeer and 20 elves. Santa’s division of work is that for 10,000 rounds until
retirement, he rides the sleigh 2,000 times and helps 8,000 times groups of three elves, or for 20 elves,
each elf on average 1,200 times. For 100,000 and 1,000,000 rounds until Santa’s retirement the ratio is
the same. Some observations are in order:
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• The Java implementation uses a single monitor for all synchronization. While it would be natural
to have Santa, reindeer, and elf processes as well as sleigh, shop, and Santa monitors (synchro-
nizing reindeer, elves, and the sleigh / shop, respectively), this leads to the nested monitor call
problem, for example when elves are calling the shop and the shop calls Santa. Ben-Ari’s and our
implementation use therefore a single monitor with the functionality of sleigh, shop, and Santa
monitors. This limits concurrency, e.g. reindeer and elves cannot assemble independently. Java
necessitates that each monitor method contains a notifyAll() for waking up all threads, most of
which will immediately sleep again. The timing results confirm that this is wasteful; in particular
the ratio between user and system times make the synchronization effort evident.

• The C implementation uses operating systems threads, which require more cycles when switching
than lightweight threads as used by Lime, Go, and Java. Compared to Java with monitors, only
the “right” threads are woken up, but the ratio of user to system time tells that switching operating
systems threads is expensive.

• The Go implementation uses CSP-like synchronous channels, which are particularly suitable for
barrier synchronization with Santa; by comparison, of the semaphore P() and V () operations,
only one blocks, meaning that two semaphores are needed for each synchronization point. The
goroutines (lightweight threads) of Go are mapped to coroutines, like in Lime, and distributed over
cores (like in Lime), leading to good performance. Go does not support priorities when receiving
or sending over channels, so to give reindeer priority over elves, a workaround is needed.

• The Lime runtime system is designed for very quickly switching between actions when a guard
blocks. Since the bodies of methods and actions in the Santa Claus Problem are short, this pays
off. Interestingly, the real time is the user time, suggesting that only one core was active. The Lime
runtime system is also designed for distributing a very large number of concurrent objects among
cores. As there are relatively few objects here and the bodies of methods are so short that work
stealing is not effective, the Lime runtime system is not able to utilize more than one core.

The Haskell implementation of Peyton Jones was not included as its proper functioning depends on
the presence of delay statements. Trono’s implementation does not run reliably under Pthreads and has
more relaxed synchronization constraints than the Lime version, so is not included in the comparison
either.

5 Discussion

In ongoing work, we observed on a number of concurrency examples, that Lime compares favourably to
all other languages that we compared with [18], which made us wonder if that would be the case for the
Santa Claus Problem as well. It took us by surprise that Lime is almost four times faster than Go, about
45 times faster than C, and more than 250 time faster than Java. This line of work provides evidence
that the evaluation of guards in methods and actions, compared to synchronizing with semaphores and
monitors or sending over channels, is not intrinsically less efficient; the overall efficiency depends more
on the techniques used for mapping actions to coroutines and quickly switching between them. This is
encouraging for the use of verification and refinement techniques that rely on guards, as these can an
applied to highly efficient implementations.
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Appendix A

These implementations are used in the comparison of timing results.

Listing 1: Implementation with Lime
class Santa

var s: {Sleeping, Harnessing, Riding, Welcoming, Consulting}
var b: boolean
var p: int
init ()

s, b, p := Sleeping , false , 0
method back()

b := true
method harness()

when s = Harnessing do
s := Riding

method pull()
when s = Riding do

s, b := Sleeping , false
method puzzled()

p := 3
method enter()

when s = Welcoming do
s := Consulting

method consult()
when s = Consulting do

p := p − 1
if p = 0 then

s := Sleeping
else

s := Welcoming
action action1

when s = Sleeping and b do
s := Harnessing

action action2
when s = Sleeping and p = 3 and not b do

s := Welcoming

class Sleigh
var s: {Idle , Back, Harness, Pull}
var c: int
var st : Santa
init ( santa: Santa)

s, c, st := Back, 9, santa
method back()

when s = Back do
c := c − 1
if c = 0 then

s := Idle
st . back()
s, c := Harness, 9

method harness()
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when s = Harness do
c := c − 1
if c = 0 then

s := Idle
st . harness()
s, c := Pull , 9

method pull()
when s = Pull do

c := c − 1
if c = 0 then

s := Idle
st . pull ()
s, c := Back, 9

class Reindeer
var sl : Sleigh
init ( sleigh : Sleigh )

sl := sleigh
action action1

sl . back()
sl . harness()
sl . pull ()

class Shop
var s: {Idle , Puzzled, Help}
var c: int
init ( santa: Santa)

s, c, st := Puzzled, 3, santa
method puzzled()

when s = Puzzled do
c := c − 1
if c = 0 then

s := Idle
st . puzzled ()
s, c := Help, 3

method enter()
when s = Help do

st . enter ()
method consult()

st . consult ()
c := c − 1
if c = 0 then

s, c := Puzzled, 3

class Elf
var sh: Shop
init ( shop: Shop)

sh := shop
action action1

sh. puzzled ()
sh. enter ()
sh. consult ()

class Start
var st : Santa
var sl : Sleigh
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var sh: Shop
init ()

st := new Santa()
sl := new Sleigh( st )
sh := new Shop(st)
for i := 1 to 9 do new Reindeer(sl )
for i := 1 to 20 do new Elf( sh)

Listing 2: Implementation with C
#include <stdbool.h>
#include <pthread.h>
#include <semaphore.h>
#define P(sem) (sem wait(&(sem))) /∗ uses P and V for the wait and ... ∗/
#define V(sem) (sem post(&(sem))) /∗ ... signal semaphore operations ∗/

sem t wakeup, wakeupReindeer, wakeupElves;
sem t harness, harnessDone;
sem t pull , pullDone;
sem t enter , enterDone;
sem t consult , consultDone;
sem t reindeerBack, reindeerBackDone;
sem t reindeerHarness, reindeerHarnessDone;
sem t reindeerPull , reindeerPullDone;
sem t elfPuzzled , elfPuzzledDone;
sem t elfEnter , elfEnterDone;
sem t elfConsult , elfConsultDone;

bool b;

void ∗Santa(void ∗arg) {
for ( int t = 0; t < 10000; t ++) { // Sleeping

P(wakeup); // woken up by Sleigh or Shop
if (b) { // Delivering

b = false ; V(wakeupReindeer);
P(harness) ; V(harnessDone);
P(pull ) ; V(pullDone);

} else { // Helping
V(wakeupElves);
for ( int i = 0; i < 3; i ++) {

P(enter ) ; V(enterDone);
P(consult ) ; V(consultDone);

}
}

}
}
void ∗Sleigh (void ∗arg) {

for (;;) {
for ( int i = 0; i < 9; i ++) V(reindeerBack) ;
for ( int i = 0; i < 9; i ++) P(reindeerBackDone);
b = true ; V(wakeup); P(wakeupReindeer);
for ( int i = 0; i < 9; i ++) V(reindeerHarness) ;
for ( int i = 0; i < 9; i ++) P(reindeerHarnessDone);
V(harness) ; P(harnessDone);
for ( int i = 0; i < 9; i ++) V(reindeerPull ) ;
for ( int i = 0; i < 9; i ++) P(reindeerPullDone);
V(pull ) ; P(pullDone);
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}
}
void ∗Reindeer(void ∗arg) {

for ( int t = 0; t < 2000; t ++) {
P(reindeerBack) ; V(reindeerBackDone);
P(reindeerHarness) ; V(reindeerHarnessDone);
P(reindeerPull ) ; V(reindeerPullDone);

}
}
void ∗Shop(void ∗arg) {

for (;;) {
for ( int i = 0; i < 3; i ++) V(elfPuzzled ) ;
for ( int i = 0; i < 3; i ++) P(elfPuzzledDone) ;
V(wakeup); P(wakeupElves);
for ( int i = 0; i < 3; i ++) {

V(elfEnter ) ; P(elfEnterDone);
V(enter ) ; P(enterDone);
V(elfConsult ) ; P(elfConsultDone) ;
V(consult ) ; P(consultDone);

}
}

}
void ∗Elf (void ∗arg) {

for (;;) {
P(elfPuzzled ) ; V(elfPuzzledDone) ;
P(elfEnter ) ; V(elfEnterDone);
P(elfConsult ) ; V(elfConsultDone) ;

}
}
void main() {

sem init (&wakeup, 0, 0); sem init (&wakeupReindeer, 0, 0); sem init (&wakeupElves, 0, 0);
sem init (&harness, 0, 0); sem init (&harnessDone, 0, 0);
sem init (&pull, 0, 0); sem init (&pullDone, 0, 0);
sem init (&enter, 0, 0); sem init (&enterDone, 0, 0);
sem init (&consult, 0, 0); sem init (&consultDone, 0, 0);
sem init (&reindeerBack, 0, 0); sem init (&reindeerBackDone, 0, 0);
sem init (&reindeerHarness, 0, 0); sem init (&reindeerHarnessDone, 0, 0);
sem init (&reindeerPull , 0, 0); sem init (&reindeerPullDone, 0, 0);
sem init (&elfPuzzled , 0, 0); sem init (&elfPuzzledDone, 0, 0);
sem init (&elfEnter , 0, 0); sem init (&elfEnterDone, 0, 0);
sem init (&elfConsult , 0, 0); sem init (&elfConsultDone, 0, 0);
pthread t tid ;
for ( int i = 0; i < 9; i ++) pthread create (&tid , NULL, Reindeer, NULL);
for ( int i = 0; i < 20; i ++) pthread create (&tid , NULL, Elf, NULL);
pthread create (&tid , NULL, Sleigh, NULL); pthread create (&tid , NULL, Shop, NULL);
pthread create (&tid , NULL, Santa, NULL); pthread join ( tid , NULL);

}

Listing 3: Implementation with Go
package main

var reindeerBack, reindeerHarness, reindeerPull chan bool
var back, harness, pull chan bool
var elfPuzzled , elfEnter , elfConsult chan bool
var puzzled , enter , consult chan bool
var done chan bool
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func Santa() {
b, p := false , false // reindeer back, elves puzzled
for t := 0; t < 10000; t ++ { // invariant : !b

if !p { // neither reindeer back nor elves puzzled
select { // wait for either one
case <− back: b = true
case <− puzzled: p = true
}

}
if p { // elves puzzled

select { // check if reindeer back as well
case <− back: b = true
default :
}

}
// either b or p is true , pick one
if b { // prefer reindeer

<− harness ; <− pull ; b = false
} else { // otherwise elves

for i := 0; i < 3; i ++ {
<− enter ; <− consult

}
p = false

}
}
done <− true

}
func Sleigh () {

for {
for i := 0; i < 9; i ++ {<− reindeerBack}
back <− true
for i := 0; i < 9; i ++ {<− reindeerHarness}
harness <− true
for i := 0; i < 9; i ++ {<− reindeerPull}
pull <− true

}
}
func Shop() {

for {
for i := 0; i < 3; i ++ {<− elfPuzzled}
puzzled <− true
for i := 0; i < 3; i ++ {

<− elfEnter ; enter <− true ; <− elfConsult ; consult <− true
}

}
}
func Reindeer() {

for r := 0; r < 2000; r++ {
reindeerBack <− true ; reindeerHarness <− true ; reindeerPull <− true

}
}
func Elf () {

for {
elfPuzzled <− true ; elfEnter <− true ; elfConsult <− true

}
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}
func main() {

reindeerBack, reindeerHarness, reindeerPull = make(chan bool), make(chan bool), make(chan bool)
back, harness, pull = make(chan bool), make(chan bool), make(chan bool)
elfPuzzled , elfEnter , elfConsult = make(chan bool), make(chan bool), make(chan bool)
puzzled , enter , consult = make(chan bool), make(chan bool), make(chan bool)
done = make(chan bool)
go Santa() ; go Sleigh () ; go Shop()
for i := 0; i < 9; i ++ {go Reindeer() }
for i := 0; i < 20; i ++ {go Elf () }
<− done

}

Listing 4: Implementation with Java
enum R {Relaxing, Back, Harnessing, Harnessed, Pulling , Done}
enum E {Working, Puzzled, Entering , Entered, Consulting , Enlightened}
enum Task {deliver , help}
class SantasShop {

int rc = 9, ec = 3; // reindeer count, elf count
R rs = R.Relaxing; // state of reindeer
E es = E.Working; // state of elves

synchronized void back() /∗ called by reindeer ∗/ {
while ( rs != R.Relaxing) try {wait() ;} catch (Exception x) {}
rc −= 1; if ( rc == 0) {rs = R.Back; rc = 9;} notifyAll () ;

}
synchronized void harness() /∗ called by reindeer ∗/ {

while ( rs != R.Harnessing) try {wait() ;} catch (Exception x) {}
rc −= 1; if ( rc == 0) {rs = R.Harnessed; rc = 9;} notifyAll () ;

}
synchronized void pull () /∗ called by reindeer ∗/ {

while ( rs != R.Pulling ) try {wait() ;} catch (Exception x) {}
rc −= 1; if ( rc == 0) {rs = R.Done; rc = 9;} notifyAll () ;

}

synchronized void puzzled () /∗ called by elves ∗/ {
while (es != E.Working) try {wait() ;} catch (Exception x) {}
ec −= 1; if (ec == 0) {es = E.Puzzled; ec = 3;} notifyAll () ;

}
synchronized void enter () /∗ called by elves ∗/ {

while (es != E.Entering ) try {wait() ;} catch (Exception x) {}
es = E.Entered; notifyAll () ;

}
synchronized void consult () /∗ called by elves ∗/ {

while (es != E.Consulting ) try {wait() ;} catch (Exception x) {}
es = E.Enlightened ; notifyAll () ;

}

synchronized Task wakeup() /∗ called by Santa ∗/ {
while ( rs != R.Back && es != E.Puzzled) try {wait() ;} catch (Exception x) {}
if ( rs == R.Back) {rs = R. Harnessing; notifyAll () ; return Task. deliver ;}
else {es = E.Entering ; notifyAll () ; return Task. help;}

}
synchronized void hitch () /∗ called by Santa ∗/ {

while ( rs != R.Harnessed) try {wait() ;} catch (Exception x) {}
rs = R.Pulling ; notifyAll () ;
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}
synchronized void ride () /∗ called by Santa ∗/ {

while ( rs != R.Done) try {wait() ;} catch (Exception x) {}
rs = R.Relaxing; notifyAll () ;

}
synchronized void welcome() /∗ called by Santa ∗/ {

while (es != E.Entered) try {wait() ;} catch (Exception x) {}
es = E.Consulting ; notifyAll () ;

}
synchronized void explain () /∗ called by Santa ∗/ {

while (es != E.Enlightened ) try {wait() ;} catch (Exception x) {}
ec −= 1; if (ec == 0) {es = E.Working; ec = 3;} else es = E.Entering ;
notifyAll () ;

}

public static void main(String [] args) {
SantasShop shop = new SantasShop();
new Santa(shop). start () ;
for ( int i = 0; i < 9; i ++) new Reindeer(shop). start () ;
for ( int i = 0; i < 20; i ++) {Thread e = new Elf( shop, i ) ; e. setDaemon(true); e. start () ;}

}
}
class Santa extends Thread {

SantasShop shop;
Santa(SantasShop ss ) {shop = ss ;}
public void run() {

for ( int t = 0; t < 10000; t ++) {
Task task = shop.wakeup();
if ( task == Task. deliver ) {

shop.hitch () ; shop.ride () ;
} else {

for ( int i = 0; i < 3; i ++) {shop.welcome(); shop.explain () ;}
}

}
}

}
class Reindeer extends Thread {

SantasShop shop;
Reindeer(SantasShop ss ) {shop = ss ;}
public void run() {

for ( int t = 0; t < 2000; t ++) {shop.back() ; shop.harness() ; shop.pull () ;}
}

}
class Elf extends Thread {

SantasShop shop; int num;
Elf (SantasShop ss , int n) {shop = ss ; num = n;}
public void run() {

for (;;) {shop.puzzled () ; shop.enter () ; shop.consult () ;}
}

}
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